Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 6, 2012
Accepted April 12, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구
A Study on the Extraction of Monasil PCA using Liquid CO2
서울대학교 화학생물공학부 화학공정 신기술 연구소, 151-744 서울시 관악구 관악로 599 1엘지화학 기술 연구원 석유화학 연구소, 305-380 대전광역시 유성구 문지동 104-1 2미원 스페셜티 케미컬 연구소, 425-100 경기도 안산시 목내동 3김포대학 환경보건과, 415-761 경기도 김포시 월곶면 김포대학로 97
School of Chemcial and Biological Engineering and Institute of Chemical Process, Seoul National University, 599 Gwanak-ro, Gwanak-gu Seoul, 151-744, Korea 1Division of Chemicals & Polymer, LG Chem Research Park, 104-1 Munji-dong, Yuseong-gu, Daejeon 305-380, Korea 2R&D Institute, Miwon Specialty Chemical Co., Ltd., 405-3 Moknae-Dong, Ansan-Si, Gyeonggi 425-100, Korea 3Environmental System Engineering, Kimpo College, San 14-1 Ponae-ri, Wolgot-myun, Gyounggi 415-761, Korea
Korean Chemical Engineering Research, August 2012, 50(4), 684-689(6), NONE Epub 25 July 2012
Download PDF
Abstract
Poly(acrylic acid) (PAA) 구형 입자는 바이오 분야의 소재에서부터 전자 재료에 이르기까지 다양한 분야에 사용되는 고분자 물질이다. 이를 생산하기 위해서는, 분산제(surfactant)를 이용한 중합 방법으로 합성을 한 후, 사용한 분산제를 제거하기 위한 별도의 Purification 과정을 거치게 된다. 일반 유기 용매를 사용하면 막대한 폐수 발생, 별도의 분리공정 추가, 잔류 용매의 가능성 등의 문제점이 발생한다. 이에 이러한 문제를 해결하고자, 액체 이산화탄소를 용매로하여, high-pressure Soxhlet extraction 방법을 개발하였다. 본 연구에서는 compressed liquid dimethyl ether (DME) 상에서 PAA 분산 중합에 사용된 pyrrolidene carboxylic acid-g-poly (siloxane) 계열의 분산제, Monasil PCA 제거하는 연구를 진행하였다. 추출된 PAA 입자의 모양은 field emission scanning electron microscopy (FE-SEM)으로 확인을 하였고, Monasil PCA의 농도는 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES)로 분석하였다. 용매의 효과를 비교하기 위해서, 액체 이산화탄소와 n-hexane과 liquid DME를 대상으로 추출 실험을 하였다. 그 결과 nhexane의 경우 일부 정제된 PAA 구형 입자를 얻을 수 있었지만, 일부는 n-hexane 증기의 높은 열에 의해서 변형된 형태의 입자를 얻었다. Liquid DME의 경우엔, 추출이 잘 되지 않았다. 액체 CO2를 이용하는 경우에 구형의 형태는 유지하면서 분산제가 제거된 입자를 얻을 수 있었다. 그리고 최적 운전 조건을 알기 위해서 8시간 동안 재비기와 응축기의 온도를 달리하면서 실험을 실시하였다. 그 결과 추출기의 온도가 19.6±0.2 ℃, 압력이 51.5±0.5 bar일 때, 가장 좋은 제거 효율을 보였다.
Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid CO2 was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid CO2 was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid CO2. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid CO2, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is 19.6±0.2 ℃ and the pressure is 51.5±0.5 bar, the best removal_x000D_
efficiency was obtained.
Keywords
References
Mark JE, Polymer Data Handbook, 2nd ed., Oxford University Press. New York, NY (1999)
Desimone JM, Maury EE, Menceloglu YZ, Mcclain JB, Romack TJ, Combes JR, Science, 265(5170), 356 (1994)
O'Neill ML, Yates MZ, Johnston KP, Smith CD, Wilkinson SP, Macromolecules, 31(9), 2838 (1998)
Christian P, Howdle SM, Irvine DJ, Macromolecules, 33(2), 237 (2000)
Hourri A, St-Arnaud JM, Bose TK, Rev. Sci. Instrum., 69(7), 2732 (1998)
Bose TK, Cole RH, J. Chem.Phys., 52(1), 140 (1970)
Mcclain JB, Betts DE, Canelas DA, Samulski ET, Desimone JM, Londono JD, Cochran HD, Wignall GD, Chilluramartino D, Triolo R, Science, 274(5295), 2049 (1996)
Lacroix-Desmazes P, Andre P, Desimone JM, Ruzette AV, Boutevin B, J. Polym. Sci. A: Polym. Chem., 42(14), 3537 (2004)
Yazdi AV, Lepilleur C, Singley EJ, Liu W, Adamsky FA, Enick RM, Beckman EJ, Fluid Phase Equilib., 117(1-2), 297 (1996)
Desimone JM, Maury EE, Menceloglu YZ, Mcclain JB, Romack TJ, Combes JR, Science, 265(5170), 356 (1994)
O'Neill ML, Yates MZ, Johnston KP, Smith CD, Wilkinson SP, Macromolecules, 31(9), 2838 (1998)
Christian P, Howdle SM, Irvine DJ, Macromolecules, 33(2), 237 (2000)
Hourri A, St-Arnaud JM, Bose TK, Rev. Sci. Instrum., 69(7), 2732 (1998)
Bose TK, Cole RH, J. Chem.Phys., 52(1), 140 (1970)
Mcclain JB, Betts DE, Canelas DA, Samulski ET, Desimone JM, Londono JD, Cochran HD, Wignall GD, Chilluramartino D, Triolo R, Science, 274(5295), 2049 (1996)
Lacroix-Desmazes P, Andre P, Desimone JM, Ruzette AV, Boutevin B, J. Polym. Sci. A: Polym. Chem., 42(14), 3537 (2004)
Yazdi AV, Lepilleur C, Singley EJ, Liu W, Adamsky FA, Enick RM, Beckman EJ, Fluid Phase Equilib., 117(1-2), 297 (1996)