Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 12, 2012
Accepted March 20, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
미세유로 내에서 Pseudomonas aeruginosa의 유영 운동 분석
Analysis of Pseudomonas aeruginosa Motility in Microchannels
충남대학교 화학공학과, 305-764 대전 유성구 궁동 220
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-Gu, Daejeon 305-764, Korea
rhadum@cnu.ac.kr
Korean Chemical Engineering Research, August 2012, 50(4), 743-748(6), NONE Epub 25 July 2012
Download PDF
Abstract
본 논문에서는 미세 환경이 Pseudomonas aeruginosa의 운동성에 주는 영향을 조사하기 위하여 다양한 크기의 미세유로 내에서 박테리아의 운동성을 분석하였다. 본 논문에서는 미세유체 칩을 사용하여 2차원 공간을 만들며, 10~100μm 너비의 채널 안에서 단일 박테리아의 운동 변수인 이동속도, ‘run’운동 지속시간, ‘tumble’ 각도를 측정하였고 각 미세유로 내에서 박테리아의 운동을 표현할 수 있는 물리적 상수인 random motility coefficient를 구하였다. 상기의 물리적 측정치를 분석한 결과, 박테리아는 공간제약이 있는 경우 편모의 운동이 채널의 벽의 영향으로 인하여 회전 운동에 영향을 받게 되고, ‘run’ 운동 지속 시간이 짧아지는 것을 확인하였다. 따라서, 공간의 제한이 박테리아의 운동성을 감소시킴을 알 수 있었다. 본 연구의 결과는 박테리아의 운동성을 쉽고 정확하게 분석할 수 있는 측정 방법으로 널리_x000D_
활용될 것으로 기대된다.
This study presents the effects of micro-geometries on the swimming behavior of Pseudomonas aeruginosa. First, we have measured parameters of single-cell motility including cell speed, run duration time, and tumble angle under two dimensional space. The results are used to calculate motility coefficients in the width of microchannels ranging from 10 to 100 μm. Since the single-cell motility parameters measured depend on the interaction of flagella with the microchannel wall, the duration time of the running cell in restricted geometries is distinctively different. Therefore,_x000D_
the motility of bacteria is decreased by restricted geometries. This study suggests that microfluidic approach is useful tool for the analysis of bacterial motility under the restricted space and rapid analytical tool.
References
Ringen LM, Drake CH, J.Bacteriol., 64, 841 (1952)
Remold SK, Brown CK, Farris JE, Hundley TC, Perpich JA, Purdy ME, Microb. Ecol., 62, 505 (2011)
Ranjard L, Richaume AS, Res. Microbiol., 152, 707 (2001)
Saye DJ, Ogunseitan OA, Sayler GS, Miller RV, Appl. Environ. Microbiol., 56, 140 (1990)
Wiehlmann L, Munder A, Adams T, Juhas M, Kolmar H, Salunkhe P, Tummler B, Int. J. Med. Microbiol., 297, 615 (2007)
Wang Y, Hammes F, Boon N, Egli T, Environ. Sci. Technol., 41, 7080 (2007)
Ahmed T, Shimizu TS, Stocker R, Integr. Biol., 2, 604 (2010)
Park A, Jeong HH, Lee J, Kim KP, Lee CS, Biochip J., 5, 236 (2011)
Kim KP, Kim YG, Choi CH, Kim HE, Lee SH, Chang WS, Lee CS, Lab Chip., 10, 3296 (2010)
Jeong HH, Lee SH, Kim JM, Kim HE, Kim YG,Yoo JY, Chang WS, Lee CS, Biosens. Bioelectron., 26, 351 (2010)
Huh YS, Jeon SJ, Lee EZ, Park HS, Hong WH, Korean J. Chem. Eng., 28(3), 633 (2011)
Sia SK, Whitesides GM, Electrophoresis, 24(21), 3563 (2003)
DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB, Berg HC, Whitesides GM, Nature., 435, 1271 (2005)
Mannik J, Driessen R, Galajda P, Keymer JE, Dekker C, Proc. Natl. Acad. Sci. U.S.A., 106, 14861 (2009)
Binz M, Lee AP, Edwards C, Nicolau DV, Microelectron. Eng., 87, 810 (2010)
Di Leonardo R, Angelani L, Dell'arciprete D, Ruocco G, Iebba V, Schippa S, Conte MP, Mecarini F, De Angelis F, Di Fabrizio E, Proc. Natl. Acad.Sci. U.S.A., 107, 9541 (2010)
Kaehr B, Shear JB, Lab Chip., 9, 2632 (2009)
Hulme SE, DiLuzio WR, Shevkoplyas SS, Turner L, Mayer M, Berg HC, Whitesides GM, Lab Chip., 8, 1888 (2008)
Maki N, Gestwicki JE, Lake EM, Kiessling LL, Adler J, J. Bacteriol., 182, 4337 (2000)
Turner L, Zhang RJ, Darnton NC, Berg HC, J. Bacteriol., 192, 3259 (2010)
Berg HC, Anderson RA, Nature., 245, 380 (1973)
Yuan J, Fahrner KA, Turner L, Berg HC, Proc. Natl. Acad. Sci. U.S.A., 107, 12846 (2010)
Berg HC, E. coli in motion, Springer, New York (2004)
Li GL, Tam LK, Tang JX, Proc. Natl. Acad.Sci. U.S.A., 105, 18355 (2008)
Thar R, Kuhl M, Proc. Natl. Acad. Sci. U.S.A., 100, 5748 (2003)
Maeda K, Imae Y, Shioi JI, Oosawa F, J.Bacteriol., 127, 1039 (1976)
Frymier PD, Ford RM, Berg HC, Cummings PT, Proc. Natl. Acad. Sci. U.S.A., 92, 6195 (1995)
Berg HC, Rev. Sci. Instrum., 42, 868 (1971)
Jeon H, Lee Y, Jin S, Koo S, Lee CS, Yoo JY, Biomed. Microdevices., 11, 1135 (2009)
Frymier PD, Ford RM, AIChE J., 43(5), 1341 (1997)
Liu ZW, Papadopoulos KD, Biotechnol. Bioeng., 51(1), 120 (1996)
Berg HC, Brown DA, Nature., 239, 500 (1972)
Othmer HG, Dunbar SR, Alt W, J. Math. Biol., 26, 263 (1988)
Lewus P, Ford RM, Biotechnol. Bioeng., 75(3), 292 (2001)
Ramia M, Tullock DL, Phan-Thien N, Biophys. J., 65, 755 (1993)
Biondi SA, Quinn JA, Goldfine H, AIChE J., 44(8), 1923 (1998)
Remold SK, Brown CK, Farris JE, Hundley TC, Perpich JA, Purdy ME, Microb. Ecol., 62, 505 (2011)
Ranjard L, Richaume AS, Res. Microbiol., 152, 707 (2001)
Saye DJ, Ogunseitan OA, Sayler GS, Miller RV, Appl. Environ. Microbiol., 56, 140 (1990)
Wiehlmann L, Munder A, Adams T, Juhas M, Kolmar H, Salunkhe P, Tummler B, Int. J. Med. Microbiol., 297, 615 (2007)
Wang Y, Hammes F, Boon N, Egli T, Environ. Sci. Technol., 41, 7080 (2007)
Ahmed T, Shimizu TS, Stocker R, Integr. Biol., 2, 604 (2010)
Park A, Jeong HH, Lee J, Kim KP, Lee CS, Biochip J., 5, 236 (2011)
Kim KP, Kim YG, Choi CH, Kim HE, Lee SH, Chang WS, Lee CS, Lab Chip., 10, 3296 (2010)
Jeong HH, Lee SH, Kim JM, Kim HE, Kim YG,Yoo JY, Chang WS, Lee CS, Biosens. Bioelectron., 26, 351 (2010)
Huh YS, Jeon SJ, Lee EZ, Park HS, Hong WH, Korean J. Chem. Eng., 28(3), 633 (2011)
Sia SK, Whitesides GM, Electrophoresis, 24(21), 3563 (2003)
DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB, Berg HC, Whitesides GM, Nature., 435, 1271 (2005)
Mannik J, Driessen R, Galajda P, Keymer JE, Dekker C, Proc. Natl. Acad. Sci. U.S.A., 106, 14861 (2009)
Binz M, Lee AP, Edwards C, Nicolau DV, Microelectron. Eng., 87, 810 (2010)
Di Leonardo R, Angelani L, Dell'arciprete D, Ruocco G, Iebba V, Schippa S, Conte MP, Mecarini F, De Angelis F, Di Fabrizio E, Proc. Natl. Acad.Sci. U.S.A., 107, 9541 (2010)
Kaehr B, Shear JB, Lab Chip., 9, 2632 (2009)
Hulme SE, DiLuzio WR, Shevkoplyas SS, Turner L, Mayer M, Berg HC, Whitesides GM, Lab Chip., 8, 1888 (2008)
Maki N, Gestwicki JE, Lake EM, Kiessling LL, Adler J, J. Bacteriol., 182, 4337 (2000)
Turner L, Zhang RJ, Darnton NC, Berg HC, J. Bacteriol., 192, 3259 (2010)
Berg HC, Anderson RA, Nature., 245, 380 (1973)
Yuan J, Fahrner KA, Turner L, Berg HC, Proc. Natl. Acad. Sci. U.S.A., 107, 12846 (2010)
Berg HC, E. coli in motion, Springer, New York (2004)
Li GL, Tam LK, Tang JX, Proc. Natl. Acad.Sci. U.S.A., 105, 18355 (2008)
Thar R, Kuhl M, Proc. Natl. Acad. Sci. U.S.A., 100, 5748 (2003)
Maeda K, Imae Y, Shioi JI, Oosawa F, J.Bacteriol., 127, 1039 (1976)
Frymier PD, Ford RM, Berg HC, Cummings PT, Proc. Natl. Acad. Sci. U.S.A., 92, 6195 (1995)
Berg HC, Rev. Sci. Instrum., 42, 868 (1971)
Jeon H, Lee Y, Jin S, Koo S, Lee CS, Yoo JY, Biomed. Microdevices., 11, 1135 (2009)
Frymier PD, Ford RM, AIChE J., 43(5), 1341 (1997)
Liu ZW, Papadopoulos KD, Biotechnol. Bioeng., 51(1), 120 (1996)
Berg HC, Brown DA, Nature., 239, 500 (1972)
Othmer HG, Dunbar SR, Alt W, J. Math. Biol., 26, 263 (1988)
Lewus P, Ford RM, Biotechnol. Bioeng., 75(3), 292 (2001)
Ramia M, Tullock DL, Phan-Thien N, Biophys. J., 65, 755 (1993)
Biondi SA, Quinn JA, Goldfine H, AIChE J., 44(8), 1923 (1998)