Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 27, 2012
Accepted April 27, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
PEMFC에서 전극과 전해질 막의 열화 가속 시험
Degradation Accelerated Stress Test of Electrode and Membrane in PEMFC
순천대학교 화학공학과, 540-742 전남 순천시 매곡동 315 1현대자동차 환경기술연구소, 446-912 경기도 용인시 기흥구 마북동 104
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742, Korea 1HMC Eco Technology Research Institute, 104 Mabuk-dong, Giheung-gu, Youngin, Gyunggi 446-912, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, October 2012, 50(5), 778-782(5), 10.9713/kcer.2012.50.5.778 Epub 2 October 2012
Download PDF
Abstract
최근까지 대부분의 PEMFC MEA (Membrane and Electrode Assembly) 열화 연구는 전극과 전해질막 각각 분리되어 연구되었다. 그런데 실재 PEMFC 운전조건에서는 전극과 막은 동시에 열화된다. 그래서 본 연구에서는 전극과 막열화가 동시에 일어나는 조건에서 열화 가속시험을 하였다. 실험결과 전극과 막 열화가 서로 상호작용함을 보였다. 막열화는 촉매의 활성면적 감소폭을 줄였고, 전극열화는 막의 수소투과 전류와 불소유출속도(FER) 증가폭을 감소시켰다.
Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. Therefore in this work, AST (Accelerated Stress Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. There was interaction between membrane degradation and electrode degradation. Membrane degradation reduced the decrease range of catalyst active area by electrode degradation. Electrode degradation reduces increase range of the hydrogen crossover current and FER (Fluoride Emission Rate) by membrane degradation.
References
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrogen Energy., 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources., 164, 126 (2006)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Kim T, Lee J, Lee H, Lim TW, Park K, Korean Chem. Eng. Res., 45(4), 345 (2007)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrogen Energy., 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources., 164, 126 (2006)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Kim T, Lee J, Lee H, Lim TW, Park K, Korean Chem. Eng. Res., 45(4), 345 (2007)