Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 16, 2012
Accepted June 11, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
매체순환식 가스연소기에서 고온 환원반응성 증대 방법
Method for Improvement of Reduction Reactivity at High Temperature in a Chemical-Looping Combustor
1한국에너지기술연구원 온실가스연구단, 305-343 대전시 유성구 장동 71-2 2충남대학교 녹색에너지기술전문대학원, 305-764 대전시 유성구 대학로 99
1Greenhouse Gas Center, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 2Graduate School of Green Energy Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
Korean Chemical Engineering Research, October 2012, 50(5), 843-849(7), 10.9713/kcer.2012.50.5.843 Epub 2 October 2012
Download PDF
Abstract
매체순환식 가스연소기 산소공여입자로 NiO 계열 산소공여입자를 사용할 경우 고온 조건(>900 ℃)에서 온도가 증가함에 따라 환원반응 배출기체 중 CO 농도가 증가하게 되며, 이에 의해 연료전환율과 CO2 선택도가 감소하게 된다. 이러한 고온 환원반응성 저하를 개선하기 위한 방법으로 매체순환 가스연소기에 적용 가능한 금속산화물들에 대해 온도변화에 따른 평형 CO 농도를 계산 및 비교하여 반응성 개선이 가능한 금속산화물을 선정하였다. 선정된 금속산화물을 NiO 계열 산소공여입자와 물리적으로 혼합하는 방법을 적용하여 고온 환원반응성 개선이 가능한지를 회분식 유동층 실험장치를 이용하여 측정 및 해석하였다. 900~1000 ℃ 범위에서 기존 NiO 계열 입자(OCN706-1100) 만을 사용한 경우에 비해 Co3O4 계열 입자(Co3O4/CoAl2O4)를 10% 혼합한 경우가 연료전환율 및 CO2 선택도가 높게 나타났으며 환원반응 배출기체 중 CO의 농도가 감소하는 경향을 나타내어 Co3O4 계열 산소공여입자를 함께 사용하는 방법으로 고온 환원반응성 개선이 가능함을 확인할 수 있었다.
When we use NiO based particle as an oxygen carrier in a chemical looping combustion system, the fuel conversion and the CO2 selectivity decreased with increasing reaction temperature within high temperature range (>900 ℃) due to the increment of exhaust CO concentration from reduction reactor. To improve reduction reactivity at high temperature, the applicable metal oxide component was selected by calculation of the equilibrium CO concentration of metal oxide components. After that, feasibility of reduction reactivity improvement at high temperature was_x000D_
checked by using solid mixture of the selected metal oxide particle and NiO based oxygen carrier. The reactivity was measured and investigated using batch type fluidized bed. The solid mixture of Co3O4/CoAl2O4(10%) and OCN706-1100(90%) showed higher fuel conversion, higher CO2 selectivity and lower CO concentration than OCN706-1100 (100%) cases. Consequently, we could conclude that improvement of reduction reactivity at high temperature range by adding some Co3O4 based oxygen carrier was feasible.
Keywords
References
Figueroa JD, Fout T, Plasynski S, Mcilvried H, Srivasrava RD, Int. J.of Greenhouse Gas Controls., 2, 9 (2008)
Ryu HJ, “CO2-NOx Free Chemical-Looping Combustion Technology,” KOSEN report, available on http://www.kosen21.org (2003)
Ryu HJ, Kim,YJ, Park YS, Park MH, Trans. of the Korean Hydrogen and New Energy Society., 22(2), 213 (2011)
Ryu HJ, Hyun JS, Kim YJ, Park YS, Park MH, Trans. of the Korean Hydrogen and New Energy Society., 22(6), 884 (2011)
Akai M, Kagojo T, Inoue M, Energy Convers. Mgmt., 36(6-9), 801 (1995)
Wolf J, Anheden M, Yan JY, Fuel, 84(7-8), 993 (2005)
ISHIDA M, JIN HG, Energy, 19(4), 415 (1994)
Ryu HJ, Jin GT, Jo SH, Bae DH, Theor.Appl. Chem. Eng., 12(2), 259 (2006)
Park SS, Lee DH, Choi WK, Ryu HJ, Rhee YW, Trans. of the Korean Hydrogen and New Energy Society., 23(1), 83 (2012)
Linderholm C, Mattisson T, Lyngfelt A, Fuel, 88(11), 2083 (2009)
Linderholm C, Jerndal E, Mattisson T, Lyngfelt A, Chem. Eng. Res. Des., 88(5-6A), 661 (2010)
Ryu HJ, Jin GT, Korean Chem. Eng. Res., 42(5), 588 (2004)
Baek JI, Ryu JH, Lee JB, Eom TH, Kim KS, Yang SR, Ryu CK, Energy Procedia., 4, 349 (2011)
Ryu HJ, Kim KS, Park YS, Park MH, Trans. of the Korean Hydrogen and New Energy Society., 20(2), 151 (2009)
Ryu HJ, Jin GT, Trans. of the Korean Hydrogen and New Energy Society., 15(3), 208 (2004)
Ryu HJ, Shun DW, Bae DH, Park MH, Korean J. Chem. Eng., 26(2), 523 (2009)
Han GB, Park NK, Ryu SO, Lee TJ, Korean Chem. Eng. Res., 44(4), 356 (2006)
Ryu HJ, “CO2-NOx Free Chemical-Looping Combustion Technology,” KOSEN report, available on http://www.kosen21.org (2003)
Ryu HJ, Kim,YJ, Park YS, Park MH, Trans. of the Korean Hydrogen and New Energy Society., 22(2), 213 (2011)
Ryu HJ, Hyun JS, Kim YJ, Park YS, Park MH, Trans. of the Korean Hydrogen and New Energy Society., 22(6), 884 (2011)
Akai M, Kagojo T, Inoue M, Energy Convers. Mgmt., 36(6-9), 801 (1995)
Wolf J, Anheden M, Yan JY, Fuel, 84(7-8), 993 (2005)
ISHIDA M, JIN HG, Energy, 19(4), 415 (1994)
Ryu HJ, Jin GT, Jo SH, Bae DH, Theor.Appl. Chem. Eng., 12(2), 259 (2006)
Park SS, Lee DH, Choi WK, Ryu HJ, Rhee YW, Trans. of the Korean Hydrogen and New Energy Society., 23(1), 83 (2012)
Linderholm C, Mattisson T, Lyngfelt A, Fuel, 88(11), 2083 (2009)
Linderholm C, Jerndal E, Mattisson T, Lyngfelt A, Chem. Eng. Res. Des., 88(5-6A), 661 (2010)
Ryu HJ, Jin GT, Korean Chem. Eng. Res., 42(5), 588 (2004)
Baek JI, Ryu JH, Lee JB, Eom TH, Kim KS, Yang SR, Ryu CK, Energy Procedia., 4, 349 (2011)
Ryu HJ, Kim KS, Park YS, Park MH, Trans. of the Korean Hydrogen and New Energy Society., 20(2), 151 (2009)
Ryu HJ, Jin GT, Trans. of the Korean Hydrogen and New Energy Society., 15(3), 208 (2004)
Ryu HJ, Shun DW, Bae DH, Park MH, Korean J. Chem. Eng., 26(2), 523 (2009)
Han GB, Park NK, Ryu SO, Lee TJ, Korean Chem. Eng. Res., 44(4), 356 (2006)