Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 10, 2012
Accepted April 20, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고체발효에서 반응표면분석법을 이용한 구연산 생산 최적화
Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation
맥길대학교 바이오시스템공학과, 21111 레이크로드 세인트앤드벨라뷰시 퀘벡주, H9X 3V9
Department of Biosystems Engineering, McGill University, Ste Anne de Bellevue, Canada, H9X 3V9
kimjw1028@hotmail.com
Korean Chemical Engineering Research, October 2012, 50(5), 879-884(6), 10.9713/kcer.2012.50.5.879 Epub 2 October 2012
Download PDF
Abstract
본 실험에서는 Aspergillus niger NRRL 567의 고체배양을 이용한 구연산 생산 시, 물리/화학적 발효 조건인 배양 온도, 배지 pH, 접종 농도 및 수분 함량이 구연산 생산에 미치는 영향을 단일변수(one-factor-at-a-time)와 반응표면 분석법(surface response methodology)을 이용하여 순차적 최적화를 수행하였다. 단일변수 최적화의 경우, A. niger에 의한 구연산 생산은 물리/화학적 발효 조건에 의해 영향을 받으며, 발효 온도 30 ℃, 영양 배지 pH 7.1, 수분 함량 75%와 접종 농도 4.0×106 spores/ml에서 최대 구연산 생산인 98.2 g/kg DPM (dry peat moss)을 보였다. 단일변수 최적화에 근거하여 반응표면 분석법을 도입하여 2차 최적화를 수행했을 경우, 배지 pH와 수분 함량이 구연산 생산에 유의한 영향_x000D_
을 주었으며 온도 26.5 ℃, 영양 배지 pH 9.9, 수분 함량 75.1%와 접종 농도 6.0×106 spores/ml에서 최대 구연산 생산인 118.8 g/kg DPM가 얻어졌다. 이는 최적화 이전의 대조군에 비해 구연산 생산이 1.6배 증가한 결과이다.
In this present study, Aspergillus niger NRRL 567 was cultivated on an inert support material and the effects of various fermentation parameters including temperature, nutrient solution pH, inoculation level, and moisture content were observed and optimized by one-factor-at-a-time (OFAT) and response surface methodology (RSM), sequentially. It was found that the incubation temperature of 30 ℃ with 75% moisture content, nutrient solution pH of 7.1 and inoculation level of 4.0×106 spores/ml were the most favorable. Again, fermentation parameters were optimized using RSM. The determined optimum condition is 26.5 ℃, pH 9.9, 75.1%, and 6.0×106 spores/ml. Under this optimized condition, A. niger NRRL 567 produced 118.8 g citric acid/kg dry peat moss at 72 hr. Maximum citric acid production of optimized condition by RSM represented a 1.6-fold increase compared to that obtained from control experiment.
References
Haq I, Khurshid S, Ali K, Ashraf H, Qadeer MA, Rajoka I, World J. Microbiol.Biotechnol., 17, 35 (2001)
Pazouki M, Felse PA, Sinha J, Panda T, Bioprocess Eng., 22, 353 (2000)
Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM, Bioresour. Technol., 74(2), 175 (2000)
Hang YD, Luh BS, Woodams EE, J. Food Sci., 226, 175, 52 (1987)
Alvarez-Vasquez F, Gonzalez-Alco C, Torres NV, Biotechnol. Bioeng., 70, 82 (2000)
Wasay SA, Barrington SF, Tokunaga S, Water Air Soil Pollut., 116, 449 (1999)
Barrington S, Kim JS, Wang L, Kim JW, Korean J. Chem. Eng., 26, 422 (2008)
Xu DB, Kubicek CP, Roch M, App. Microbiol. Biotechnol., 30, 444 (1989)
Prado FC, Vandenberghe LP, Soccol CR, Braz.Arch. Biol. Technol., 48, 29 (2005)
Barrington S, Kim JW, Bioresour. Technol., 99(2), 368 (2008)
Battaglin RA, Huergo M, Pilodof AMR, Bartholomai GB, Appl.Microbiol. Biotechnol., 35, 292 (1991)
Wen ZY, Chen F, Biotechnol. Bioeng., 75(2), 159 (2001)
Pintado J, Torrado A, Gonzalez MP, Murado MA, Enzyme Microb. Technol., 23(1-2), 149 (1998)
Ellaiah P, Srinivasulu B, Adinarayana K, Process Biochem., 30, 529 (2004)
Dhillon GS, Brar SK, Verma M, Tyagi RD, J. Appl. Microbiol., 110(4), 1045 (2011)
Roukas TJ, Ind. Microbol.Biotechnol., 25, 298 (2000)
Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM, Bioresour. Technol., 74(2), 175 (2000)
Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV, Process Biochem., 38, 715 (2002)
Kumar D, Verma R, Bhalla TC, J. Food Sci Technol., 47, 458 (2010)
Nampoothiri MK, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A, Process Biochem., 11, 1583 (2003)
Bari MN, Alam MZ, Muyibi SA, Jamal P, Abdullah-Al-Mamum, Bioresour. Technol., 100(12), 3113 (2009)
Tengerdy, Solid state fermentation RP, Trends Biotechnol., 3, 96 (1985)
Reid ID, Enz. Microbiol. Technol., 11, 786 (1989)
Rezaei PS, Darzi GN, Shafaghat H, Korean J. Chem. Eng., 27(3), 919 (2010)
Kamini NR, Mala JGS, Puvanakrishnan R, Process. Biochem., 28, 505 (1998)
Fawole OB, Odunfa, Int. Biodeterior., 51, 223 (2003)
Goes AP, Sheppard JD, J.Chem. Technol. Biotechnol., 73, 709 (1999)
Hang YD, Woodams EE, Bioresour. Technol., 65(3), 251 (1998)
Kim KS, Kim JS, Korean Chem. Eng. Res., 48(6), 704 (2010)
Kim JW, Barrington S, Sheppard J, Lee B, Process Biochem., 41, 1253 (2006)
Pazouki M, Felse PA, Sinha J, Panda T, Bioprocess Eng., 22, 353 (2000)
Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM, Bioresour. Technol., 74(2), 175 (2000)
Hang YD, Luh BS, Woodams EE, J. Food Sci., 226, 175, 52 (1987)
Alvarez-Vasquez F, Gonzalez-Alco C, Torres NV, Biotechnol. Bioeng., 70, 82 (2000)
Wasay SA, Barrington SF, Tokunaga S, Water Air Soil Pollut., 116, 449 (1999)
Barrington S, Kim JS, Wang L, Kim JW, Korean J. Chem. Eng., 26, 422 (2008)
Xu DB, Kubicek CP, Roch M, App. Microbiol. Biotechnol., 30, 444 (1989)
Prado FC, Vandenberghe LP, Soccol CR, Braz.Arch. Biol. Technol., 48, 29 (2005)
Barrington S, Kim JW, Bioresour. Technol., 99(2), 368 (2008)
Battaglin RA, Huergo M, Pilodof AMR, Bartholomai GB, Appl.Microbiol. Biotechnol., 35, 292 (1991)
Wen ZY, Chen F, Biotechnol. Bioeng., 75(2), 159 (2001)
Pintado J, Torrado A, Gonzalez MP, Murado MA, Enzyme Microb. Technol., 23(1-2), 149 (1998)
Ellaiah P, Srinivasulu B, Adinarayana K, Process Biochem., 30, 529 (2004)
Dhillon GS, Brar SK, Verma M, Tyagi RD, J. Appl. Microbiol., 110(4), 1045 (2011)
Roukas TJ, Ind. Microbol.Biotechnol., 25, 298 (2000)
Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM, Bioresour. Technol., 74(2), 175 (2000)
Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV, Process Biochem., 38, 715 (2002)
Kumar D, Verma R, Bhalla TC, J. Food Sci Technol., 47, 458 (2010)
Nampoothiri MK, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A, Process Biochem., 11, 1583 (2003)
Bari MN, Alam MZ, Muyibi SA, Jamal P, Abdullah-Al-Mamum, Bioresour. Technol., 100(12), 3113 (2009)
Tengerdy, Solid state fermentation RP, Trends Biotechnol., 3, 96 (1985)
Reid ID, Enz. Microbiol. Technol., 11, 786 (1989)
Rezaei PS, Darzi GN, Shafaghat H, Korean J. Chem. Eng., 27(3), 919 (2010)
Kamini NR, Mala JGS, Puvanakrishnan R, Process. Biochem., 28, 505 (1998)
Fawole OB, Odunfa, Int. Biodeterior., 51, 223 (2003)
Goes AP, Sheppard JD, J.Chem. Technol. Biotechnol., 73, 709 (1999)
Hang YD, Woodams EE, Bioresour. Technol., 65(3), 251 (1998)
Kim KS, Kim JS, Korean Chem. Eng. Res., 48(6), 704 (2010)
Kim JW, Barrington S, Sheppard J, Lee B, Process Biochem., 41, 1253 (2006)