Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 19, 2012
Accepted July 18, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달
Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid
(주)GS칼텍스 기술연구소, 305-380 대전시 유성구 문지동 104-4 1한국과학기술원 생명화학공학과, 305-701 대전시 유성구 구성동 373-1
R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yuseong-gu, Daejeon 305-380, Korea 1Department of Chemical & Biomolecular Engineering (BK21 program), KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
whhong@kaist.ac.kr
Korean Chemical Engineering Research, December 2012, 50(6), 1021-1026(6), 10.9713/kcer.2012.50.6.1021 Epub 29 November 2012
Download PDF
Abstract
단일 액적 시스템에서의 비정상상태 물질 전달에 대한 연구를 진행하였다. 단일 액적계를 위한 이성분계로는 옥탄올(연속상)-물(분산상) 시스템이 이용되었으며 동반되는 불균일 반응으로는 아민추출제(tri-n-octylamine,TOA)를 이용한 숙신산 추출 반응을 모델 시스템으로 선정하였다. 점도, 밀도, 용질의 분배계수, 연속상에서 하강하는 액적의 종말속도, 용질과 추출제의 확산계수 등과 같은 시스템의 기본 특성을 파악하기 위한 실험과 이론적 계산들이 수행되었다. 액적의 종말 속도는 숙신산 농도에는 크게 영향을 받지 않는 것으로 보이나 TOA가 없을 때는 숙신산 농도에 따라 약간 증가하는 경향을 보였고, TOA 농도 증가와 함께 감소하였다. 액적의 낙하는 수직 낙하 경로를 기준으로 좌우로 진동_x000D_
하면서 움직이는 경향을 보였다. 낙하하는 액적에서의 물질 전달 관찰을 위해 물질 전달 셀을 제작하여 시간에 따른 액적 내의 평균 농도 변화를 관찰하였고, 그 결과를 무차원 변수를 이용하여 해석하였다. 50 g/L의 숙신산 농도 조건하에서 TOA 농도를 0.1과 0.5 mol/kg 으로 조절하였을 때, 전자의 경우에는 관찰 시간 범위 내에서 일정한 Sh 값을 유지하여 용질의 이동 방향으로의 농도 기울기가 감소함에 따라 훌럭스도 그에 비례하여 감소함을 알 수 있었지만, 후자의 경우에는 시간의 경과와 함께 Sh가 급격히 증가하는 현상을 보여 계면에서의 숙신산 훌럭스 감소에 비해 농도기울기 감소가 상대적으로 빠르게 일어남을 알 수 있다.
The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.
References
Hong YK, Hong WH, Han DH, Biotechnol.Bioprocess Eng., 6(6), 386 (2001)
Seader JD, Henley EJ, Separation Process Principles, 2nd ed., John Wiley & Sons, New York (1998)
Uribe-Ramirez AR, Korchinsky WJ, Chem. Eng. Sci., 55(16), 3319 (2000)
Uribe-Ramirez AR, Korchinsky WJ, Chem. Eng. Sci., 55(16), 3305 (2000)
Li XJ, Mao ZS, J. Colloid Interface Sci., 240(1), 307 (2001)
Skelland AHP, Wellek RM, AIChE Journal., 10(4), 491 (1964)
Kronig R, Brink JC, Appl. Sci. Res., A2, 142 (1950)
Clift R, Grace JR, Weber ME, Bubbles, Drops, and Particles, Academic Press (1978)
Brauer H, Int. J. Heat Mass Transf., 21(4), 445 (1978)
Juncu G, Heat Mass Transf., 37(4-5), 519 (2001)
Brounshtein BI, Fishbein GA, Rivikind VY, Int. J. Heat Mass Transf., 19(2), 193 (1976)
Brunson RJ, Wellek RM, AIChE Journal., 17(5), 1123 (1971)
Kleinman LS, Reed XB, Ind. Eng. Chem. Res., 34(10), 3621 (1995)
Kleinman LS, Reed XB, Ind. Eng. Chem. Res., 35(9), 2875 (1996)
Juncu G, Heat Mass Transf., 38(6), 523 (2002)
Pawelski A, Paschedag AR, Kraume M, Chem. Ing. Tech., 77(7), 874 (2005)
Jeon SJ, Pawelski A, Kraume M, Hong WH, J. Ind. Eng. Chem., 17(4), 782 (2011)
Tamada JA, Kertes AS, King CJ, Ind. Eng. Chem. Res., 29, 1319 (1990)
Jun YS, Huh YS, Hong WH, Hong YK, Biotechnol. Prog., 21(6), 1673 (2005)
Henschke M, Pfennig A, AIChE J., 45(10), 2079 (1999)
Reid RC, Prausnitz JM, Poling BE, The Properties of gases and liquids, 4th ed., McGraw-Hill, New York, NY (1988)
Scheibel EG, Ind. Eng. Chem., 46(9), 2007 (1954)
Liu JG, Luo GS, Pan S, Wang JD, Chem. Eng. Process., 43(1), 43 (2004)
Bhaga D, Weber ME, J. Fluid Mech., 105, 61 (1981)
Seader JD, Henley EJ, Separation Process Principles, 2nd ed., John Wiley & Sons, New York (1998)
Uribe-Ramirez AR, Korchinsky WJ, Chem. Eng. Sci., 55(16), 3319 (2000)
Uribe-Ramirez AR, Korchinsky WJ, Chem. Eng. Sci., 55(16), 3305 (2000)
Li XJ, Mao ZS, J. Colloid Interface Sci., 240(1), 307 (2001)
Skelland AHP, Wellek RM, AIChE Journal., 10(4), 491 (1964)
Kronig R, Brink JC, Appl. Sci. Res., A2, 142 (1950)
Clift R, Grace JR, Weber ME, Bubbles, Drops, and Particles, Academic Press (1978)
Brauer H, Int. J. Heat Mass Transf., 21(4), 445 (1978)
Juncu G, Heat Mass Transf., 37(4-5), 519 (2001)
Brounshtein BI, Fishbein GA, Rivikind VY, Int. J. Heat Mass Transf., 19(2), 193 (1976)
Brunson RJ, Wellek RM, AIChE Journal., 17(5), 1123 (1971)
Kleinman LS, Reed XB, Ind. Eng. Chem. Res., 34(10), 3621 (1995)
Kleinman LS, Reed XB, Ind. Eng. Chem. Res., 35(9), 2875 (1996)
Juncu G, Heat Mass Transf., 38(6), 523 (2002)
Pawelski A, Paschedag AR, Kraume M, Chem. Ing. Tech., 77(7), 874 (2005)
Jeon SJ, Pawelski A, Kraume M, Hong WH, J. Ind. Eng. Chem., 17(4), 782 (2011)
Tamada JA, Kertes AS, King CJ, Ind. Eng. Chem. Res., 29, 1319 (1990)
Jun YS, Huh YS, Hong WH, Hong YK, Biotechnol. Prog., 21(6), 1673 (2005)
Henschke M, Pfennig A, AIChE J., 45(10), 2079 (1999)
Reid RC, Prausnitz JM, Poling BE, The Properties of gases and liquids, 4th ed., McGraw-Hill, New York, NY (1988)
Scheibel EG, Ind. Eng. Chem., 46(9), 2007 (1954)
Liu JG, Luo GS, Pan S, Wang JD, Chem. Eng. Process., 43(1), 43 (2004)
Bhaga D, Weber ME, J. Fluid Mech., 105, 61 (1981)