ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 16, 2012
Accepted November 19, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

악취 및 VOC를 함유한 폐가스의 광촉매 처리: 2. 광도의 폐가스 처리효율에 대한 영향

Treatment of Waste Air Containing Malodor and VOC: 2. Effect of Light-intensity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air

1대구대학교 화학공학과, 712-714 경상북도 경산시 진량읍 내리리 15 2산업및환경폐가스연구소, 712-714 경상북도 경산시 진량읍 내리리 15
1Department of Chemical Engineering, Daegu University, 15 Naeri-ri, Jillyang-eup, Kyungsan-si, Kyungbuk 712-714, Korea 2Research Institute for Industrial and Environmental Waste Air Treatment, 15 Naeri-ri, Jillyang-eup, Kyungsan-si, Kyungbuk 712-714, Korea
khlim@daegu.ac.kr
Korean Chemical Engineering Research, December 2012, 50(6), 952-959(8), 10.9713/kcer.2012.50.6.952 Epub 29 November 2012
downloadDownload PDF

Abstract

환형 광촉매반응기 외경지지체의 반사막에 의한 광촉매반응기시스템의 광도를 제고함으로써 개선된 광촉매반응기에 의한 악취성분 및 휘발성 유기화합물을 동시 포함한 폐가스의 처리를 수행하였다. 그리고 광도 제고가 각 운전조건에서의 폐가스처리효율에 미치는 영향을 조사하였다. 광촉매 코팅된 nonporous glass bead 담체와 porous silica-based 담체를 각각 광촉매반응기에 충전하였을 때에 반사필름이 부착된 개선된 광촉매반응기 외경에서 측정한 광도는, 반사필름이 부착되지 않아서 광도가 제고되지 않은 광촉매반응기보다 각각 30.1%와 28.5% 증가하였다. Porous silica-based 담체를 충전한 개선된 광촉매반응기의 제거효율에 대한 제고효과는 약 2~3%이었다. 그러나 glass-bead 담체를 충전했을 때에 개선된 광촉매반응기의 제거효율 제고효과는 미미하였다. Porous silica-based 담체가 충전된 개선된 광촉매반응기인 최적화 광촉매반응기의 경우의 황화수소 및 톨루엔 제거효율은 nonporous glass bead가 충전되고 반사막이 없는 광촉매반응기 경우의 제거효율인 각각 19%와 53%보다 각각 약 26%와 약 60%의 증가율을 보였다. 반사막 필름표면의 roughness가 종래의 상업용 거울의 roughness보다 4배 정도 컸으나, 향후 개선된 광촉매반응기의 반사막의 roughness를 개선할 경우에 광도 개선효과가 더욱 커져서 이에 따른 악취 및 VOC를 함유한 광촉매 처리효율이 더욱 제고되리라 예상된다.
The photocatalytic reactor was designed to have improved efficiency by enhancing a light intensity of photocatalytic reactor using a reflector coated on the surface at the outer radius of annular shaped photocatalytic reactor. The improved photocatalytic reactor performed to treat waste air containing malodor and VOC with the enhanced light intensity, of which the effect on their removal efficiency was investigated. The intensities of illumination of the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst were observed to increase by 28.5% and 30.1%, respectively, compared to those of photocatalytic reactor without any reflector. Using the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst, the removal efficiencies were enhanced by 2~3% and insignificantly, respectively. The removal_x000D_ efficiencies of the optimized photocatalytic reactor with reflectors, filled with porous silica-based media carrying photocatalyst, were observed to increase by 26% and 60%, compared to those of photocatalytic reactor (i.e., 19% and 53%), without any reflector, filled with nonporous glass bead media carrying photocatalyst, for hydrogen sulfide and toluene, respectively. The roughness of used reflector surface was measured to be ca. four times as big as that of a commercial mirror. However, their removal efficiencies are expected to be enhanced by increasing an light intensity resulting from lowering the roughness of used reflector coated on the improved photocatalytic reactor in the future.

References

Tada H, Akazawa M, Kubo Y, Ito S, J. Phys. Chem. B, 102(33), 6360 (1998)
Tada H, Kubo Y, Akazawa M, Ito S, Langmuir, 14(11), 2936 (1998)
Jung KY, Park SB, Korean J. Chem. Eng., 18(6), 879 (2001)
Vohra MS, Tanaka K, Water Res., 37, 3992 (2003)
Nakano K, Obuchi E, Takagi S, Yamamoto R, Tanizaki T, Taketomi M, Eguchi M, Ichida K, Suzuki M, Hashimoto A, Sep. Purif. Technol., 34(1-3), 67 (2004)
Ismail AA, Ibrahim IA, Ahmed MS, Mohamed MR, El-Shall H, J. Photochem. Photobiol. A-Chem., 163, 445 (2004)
Zou L, Luo YG, Hooper M, Hu E, Chem. Eng. Process., 45(11), 959 (2006)
Wang YM, Liu SW, Xiu Z, Jiao XB, Cui XP, Pan J, Material Letters., 60, 974 (2006)
Tanaka K, Fukuyoshi J, Segawa H, Yoshida K, J. Hazard. Mater., B137, 947 (2006)
Marugan J, Hufschmidt D, Lopez-Munoz MJ, Selzer V, Bahnemann D, Appl. Catal. B: Environ., 62(3-4), 201 (2006)
Subramanian M, Kannan A, Chem. Eng. Sci., 65(9), 2727 (2010)
Okamoto K, Yamamoto Y, Tanaka H, Bull Chem. Soc. Jpn., 58, 2023 (1985)
D’oliveira JC, Ghassan AS, Pichat P, Environ Sci. Technol., 24, 990 (1990)
Ollis DF, Pelizzetti E, Serpone N, Environ Sci. Technol., 25, 1522 (1991)
Yang LP, Liu ZY, Energy Conv. Manag., 48(3), 882 (2007)
Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70 (2005)
Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로