ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 26, 2012
Accepted November 28, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

설폰화 활성탄 촉매를 이용한 솔비톨의 아이소소바이드로의 탈수반응

Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst

1한국화학연구원 바이오리파이너리 연구그룹, 305-600 대전광역시 유성구 신성로 19 2과학기술연합대학원대학교, 305-350 대전광역시 유성구 가정로 217
1Biorefinery Research group, Korea Research Institute of Chemical Technology (KRICT), Sinseoungno 19, Yuseoung-gu, Daejeon 305-600, Korea 2University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Korea
dwhwang@krict.re.kr, dwhwang@krict.re.kr
Korean Chemical Engineering Research, April 2013, 51(2), 189-194(6), 10.9713/kcer.2013.51.2.189 Epub 21 May 2013
downloadDownload PDF

Abstract

불균일계 고체산 촉매인 설폰기(Sulfonyl Group) 함유 활성탄 촉매를 이용하여 솔비톨(Sorbitol)의 아이소소바이드로 (Isosorbide)의 탈수반응을 수행하였다. 설폰화 반응(Sulfonation)에 의해 제조된 설폰화 활성탄 물질에 대해 대표적인 상업용 산촉매인 설폰화 지르코니아(Sulfated ZrO2)와 산성 이온교환수지 Amberlyst-36과 솔비톨 탈수반응의 촉매활성을 비교하였다. 설폰화 활성탄 촉매를 이용하여 423.15 K에서 솔비톨의 탈수 반응 결과, 100% 솔비톨 전환율과 52% 아이소소바이드 선택도를 얻었다. 설폰화 활성탄은 낮은 설폰기 농도(0.5 mmol/g)에도 불구하고 높은 표면적으로 인해 423.15 K에서 Amberlyst-36과 유사한 솔비톨 탈수 반응 특성을 보이며, Amberlyst-36 대비 473.15 K 이상 고온에서도 안정한 특성을 보이는 고체산 촉매로 판단되었다. 또한, 솔비톨 탈수반응 결과를 바탕으로 반응과 생성물의 분리_x000D_ 를 동시에 할 수 있는 반응증류 공정에 설폰화 활성탄 촉매를 적용한 결과, 기존 황산 공정 대비 2배 이상 빠른 반응 시간에 단위 설폰산 농도 기준으로 4배 이상 높은 아이소소바이드 수율을 얻을 수 있었다.
A sulfonated activated carbon (AC-SO3H) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-SO3H at 423.15 K. Although AC-SO3H possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-SO3H, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosobide from sorbitol. The reactive distillation process using AC-SO3H, the turnover number of AC-SO3H was 4 times higher than the conventional_x000D_ two-step process using sulfuric acid.

References

Chheda JN, Huber GW, Dumesic JA, Angew. Chem.-Int. Edit., 46, 7164 (2007)
Hubber GW, Corma A, Angew.Chem.-Int. Edit., 46, 7184 (2007)
Demirbas A, Energy Conv. Manag., 50(11), 2782 (2009)
Pacific Morthwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL), Report: Top Value Added Chemicals from Biomass. Volume: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (2004)
Liu AG, Luckett C, “Sorbitol Conversion Process,” US Patent 7,982,059 (2008)
Gohil RM, Polym. Eng. Sci., 49(3), 544 (2009)
Bhatia KK, “Continuous Process for the Manufacture of Anhydro Sugar Alcohols and Reactor Useful Therefor,” US patent 6,407,266 B2 (2002)
Fleche G, Huchette M, Starch., 38, 26 (1986)
Hartmann LA, “Separation of Hexitan,” US patent 3,484,459 (1969)
Holladay JE, Hu J, Wang Y, Werpy YA, Zhang X, “Method of Forming a Dianhydrosugar Alcohol,” US patent 7,649,099 A1 (2007)
Fuertes P, “Method for Preparing a Composition Containing at Least One Internal Dehydration Product for a Hydrogenated Sugar,” US patent 8008477 A1 (2008)
Kurszewska M, Skorupowa E, Madaj J, Konitz A, Wojnowski W, Wis´niewski A, Carbohydr. Res., 337, 1261 (2009)
Moore KM, Sanborn AJ, “Process for the Production of Anhydrosugar Alcohols,” US patent 6,849,748 B2 (2005)
Khan NA, Mishra DK, Hwang JS, Kwak YW, Jhung SH, Res.Chem. Intermed., 37, 1231 (2011)
Gu MG, Yu DH, Zhang HM, Sun P, Huang H, Catal. Lett., 133(1-2), 214 (2009)
Tang ZC, Yu DH, Sun P, Li H, Huang H, Bull. Korean Chem.Soc., 12, 3679 (2010)
Xia JJ, Yu D, Hu Y, Zou B, Sun P, Li H, Huang H, Catal. Commun., 12, 544 (2011)
Sun P, Yu DH, Hu Y, Tang ZC, Xia JJ, Li H, Huang H, Korean J. Chem. Eng., 28(1), 99 (2011)
Yamaguchi A, Hiyoshi N, Sato O, Shirai M, Green Chem., 13, 873 (2011)
Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S, Domen K, Angew. Chem. Int. Ed., 43, 2955 (2004)
Mo XH, Lotero E, Lu CQ, Liu YJ, Goodwin JG, Catal. Lett., 123(1-2), 1 (2008)
Khayoon MS, Hameed BH, Bioresour. Technol., 102(19), 9229 (2011)
Hara M, Top. Catal., 53, 805 (2010)
Hasan Z, Hwang JS, Jhung SH, Cat. Commun., 26, 30 (2012)
Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara T, Hayashi S, Chem. Mater., 18, 3039 (2006)
Steven XS, Ronald AK, J. Chem. Soc., 94, 1333 (1998)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로