Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 25, 2013
Accepted March 28, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
PEMFC에서 막 열화가 전극 열화에 미치는 영향
Effect of Membrane Degradation on the Electrode Degradation in PEMFC
순천대학교 화학공학과, 540-742 전남 순천시 매곡동 315 1현대자동차 환경기술연구소, 446-912 경기도 용인시 기흥구 마북동 104
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742, Korea 1HMC Eco Technology Research Institute, 104 Mabuk-dong, Giheung-gu, Youngin-si, Gyeonggi 446-912, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, June 2013, 51(3), 325-329(5), 10.9713/kcer.2013.51.3.325 Epub 3 June 2013
Download PDF
Abstract
실제 고분자 전해질 연료전지(PEMFC) 운전조건에서는 전극과 전해질 막은 동시에 열화된다. 그런데 고분자전해질 연료전지의 전극 열화와 전해질 열화의 상호 작용에 대해 연구되지 않았다. 본 연구에서는 전해질 막 열화가 전극 열화에 미치는 영향에 대해 연구하였다. 전해질 막 열화 후 전극을 열화시켜 전해질 막 열화없이 전극을 열화시켰을 때와 비교하였다. 열화전후의 I-V 성능, 수소투과전류, 순환 전압측정(CV), 임피던스, TEM 등을 측정하였다. 전해질 막열화에 의해 수소투과도가 증가하고, 이에 따라 백금 입자 성장속도가 감소함으로써 전극 열화속도가 감소함을 보였다.
The membrane and electrode were degraded coincidentally at real PEMFC(Proton Exchange Membrane Fuel Cells) operation condition. But the interaction membrane degradation between electrode degradation has not been studied. The effect of membrane degradation on electrode degradation was studied in this work. We compared electrode degradation after membrane degradation and electrode degradation without membrane degradation. I-V performance, hydrogen crossover current, impedance and TEM were measured after and before degradation of MEA. Membrane degradation enhanced hydrogen crossover, and then Pt particle growth rate was reduced. Increase of hydrogen crossover by membrane degradation reduced the electrode degradation rate.
Keywords
References
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A( Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy., 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources., 164, 126 (2006)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M, J. Electrochem. Soc., 154(1), B96 (2007)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A( Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy., 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources., 164, 126 (2006)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M, J. Electrochem. Soc., 154(1), B96 (2007)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)