Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 27, 2012
Accepted April 9, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Graphene의 플라즈마 표면 개질과 박테리아 셀룰로오스와의 결합성 검토
Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose
전남대학교 바이오에너지 및 바이오소재 협동과정, 500-757 광주광역시 북구 용봉동 300 1전남대학교 환경공학과, 500-757 광주광역시 북구 용봉동 300 2한국과학기술원 해양시스템공학과, 305-701 대전광역시 유성구 대학로 291 3전남대학교 기계공학과, 500-757 광주광역시 북구 용봉동 300
Interdisciplinary program of graduate school for bioenergy and biomaterials, Chonnam National University, 300 Young bong-dong, Buk-gu, Gwangju 500-757, Korea 1Department of Environmental Engineering, Chonnam National University, 300 Young bong-dong, Buk-gu, Gwangju 500-757, Korea 2Division of Ocean Systems Engineering, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea 3School of Mechanical Systems Engineering, Chonnam National University, 300 Young bong-dong, Buk-gu, Gwangju 500-757, Korea
seongjun@chonnam.ac.kr
Korean Chemical Engineering Research, June 2013, 51(3), 388-393(6), 10.9713/kcer.2013.51.3.388 Epub 3 June 2013
Download PDF
Abstract
본 연구에서는 물리적 강도가 강한 천연 고분자인 박테리아 셀룰로오스(BC)를 기반으로 전기적 성질이 매우 뛰어난 그래핀을 결합시켜 터치 스크린과 같은 투명 전도성 필름을 제조할 수 있는 가능성을 확인하고자 한다. 그래핀을 BC와 결합하기 위해서 라디오파의 인가강도와 처리시간을 달리하여 상온에서 산소 플라즈마 처리를 통해 표면을 개질시켰다. 개질된 그래핀의 물에 대한 접촉각이 130°에서 12°로 매우 작아진 것으로 친수성이 향상되었다. 또한, XPS 분석에서는 graphene 처리 전 산소함유량 2.99%에서 10.98%로 크게 증가하였다. 그래핀의 손상은 Raman 분석에서 ID/IG 비로 정도를 알 수 있다. 처리 전 ID/IG 비가 0.11로 손상 정도가 가장 낮았고, 처리 후 0.36~0.43으로 처리 전에 비해 그래핀의 구조적 결함이 증가하였다. 용해시킨 BC에 그래핀을 0~0.04 wt% 첨가하여 제조한 막의 XRD 분석에 의하면 BC막과 plasma 처리된 graphene이 함유된 결합막이 동일한 2θ로서 화학적으로 잘 결합되었음을 확인하였다. 이는 SEM 이미지에서 BC와 그래핀의 결합 상태를 확인한 것과 일치하였다. FT-IR 분석에서 플라즈마 처리한 그래핀이 함유된 결합막의 1,000~1,300 cm^(-1) (C=O)에서의 피크가 커진 것으로 보아 plasma 처리된 graphene에서 산소기가 생성되었음을 알 수 있었다. 이와 같은 결과로부터 BC의 물리적인 강점을 기반으로 하여 그래핀을 결합시킨다면 신규의 투명 전도성 소재를 개발할 수 있으리라 사료된다.
The study was focused to evaluate the possibility for combination membrane of bacterial cellulose (BC) and graphene with high electrical properties. BC with natural polymer matrix was known to have strong physical strength. For the combination of graphene with BC, the surface of graphene was modified with oxygen plasma by changing strength and time of radio waves in room temperature. Water contact angle of modified graphene grew smaller from 130° to 12°. XPS analysis showed that oxygen content after treatment increased from 2.99 to 10.98%. Damage degree of graphene was examined from ID/IG ratio of Raman analysis. ID/IG ratio of non-treated graphene (NTG) was 0.11, and 0.36 to 0.43 in plasma treated graphene (PTG), increasing structural defects of PTG. XRD analysis of PTG membrane with BC was 2θ same to BC only, indicating chemically combined membrane. In FT-IR analysis, 1,000 to 1,300 cm^(-1) (C=O) peak indicating oxygen radicals in PTG membrane had formed was larger than NTG membrane. The results suggest that BC as an alternation of plastic material for graphene combination has a possibility in some degree on the part like transparent conductive films.
References
Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB, Adv. Mater., 20(17), 3289 (2008)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science., 306, 666 (2004)
Astumian RD, Schelly ZA, J. Am. Chem. Soc., 106, 304 (1984)
Dwight DW, Riggs WM, J. Colloid Interf. Sci., 47, 650 (1974)
Hegemann D, Brunner H, Oehr C, Nucl. Instrum.Methods B., 208, 281 (2003)
Chen JR, Wang XY, Tomiji W, J. Appl. Polym. Sci., 72(10), 1327 (1999)
Inagaki N, Narushim K, Tuchida N, Miyazak K, J. Polym. Sci. B: Polym. Phys., 42(20), 3727 (2004)
Okuji S, Sekiya M, Nakabayashi M, Endo H, Sakudo N, Nagai K, Nucl. Instrum. Methods Phys.Res. B., 242, 353 (2006)
Novak I, Pollak V, Chodak I, Plasma Process Polym., 3, 355 (2006)
Suzer S, Argun A, Vatansever O, Aral O, J. Appl. Polym. Sci., 74(7), 1846 (1999)
Mathieson I, Bradley RH, Int. J. Adhes. Adhes., 16, 29 (1996)
Kim HC, Jeon S, Kim HI, Choi HS, Hong MH, Choi KS, Polym.(Korea), 35(6), 565 (2011)
Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y, Mater. Lett., 73, 187 (2012)
Brown AJ, J. Chem. Soc., 49, 432 (1886)
Rainer J, Luiz FF, Polym. Degrad Stab., 58, 101 (1998)
Yamanake S, Watanabe K, Applications of Bacterial Cellulose in Cellulosic Polymers, in a Gillbert (ed), Cellulosic Polymers, Blends and Composites, Hanser Inc., Cincinnati, OH, U S A. (1995)
Shibazaki H, Kuga S, Onabe F, Japan Tappi., 48, 1621 (1994)
Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature., 457, 706 (2009)
Son YJ, Sul OJ, Chung DK, Han IS, Choi YJ, Jeong CS, Kor. J. Appl. Microbiol. Biotechnol., 25, 346 (1997)
Son CJ, Chung SY, Lee JE, Kim SJ, J. Appl. Microbiol. Biotechnol., 12, 722 (2002)
Alexander WJ, Mitchell RL, Anal. Chem., 21, 1497 (1949)
Andrea CF, Solid State Commun., 143, 47 (2007)
Qi HS, Chang CY, Zhang LN, Cellulose., 15, 779 (2008)
Egal M, Budtova T, Navard PR, Cellulose., 15, 361 (2008)
Isogai AR, Saito TY, Fukuzumi HK, Nanoscale., 3, 71 (2011)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science., 306, 666 (2004)
Astumian RD, Schelly ZA, J. Am. Chem. Soc., 106, 304 (1984)
Dwight DW, Riggs WM, J. Colloid Interf. Sci., 47, 650 (1974)
Hegemann D, Brunner H, Oehr C, Nucl. Instrum.Methods B., 208, 281 (2003)
Chen JR, Wang XY, Tomiji W, J. Appl. Polym. Sci., 72(10), 1327 (1999)
Inagaki N, Narushim K, Tuchida N, Miyazak K, J. Polym. Sci. B: Polym. Phys., 42(20), 3727 (2004)
Okuji S, Sekiya M, Nakabayashi M, Endo H, Sakudo N, Nagai K, Nucl. Instrum. Methods Phys.Res. B., 242, 353 (2006)
Novak I, Pollak V, Chodak I, Plasma Process Polym., 3, 355 (2006)
Suzer S, Argun A, Vatansever O, Aral O, J. Appl. Polym. Sci., 74(7), 1846 (1999)
Mathieson I, Bradley RH, Int. J. Adhes. Adhes., 16, 29 (1996)
Kim HC, Jeon S, Kim HI, Choi HS, Hong MH, Choi KS, Polym.(Korea), 35(6), 565 (2011)
Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y, Mater. Lett., 73, 187 (2012)
Brown AJ, J. Chem. Soc., 49, 432 (1886)
Rainer J, Luiz FF, Polym. Degrad Stab., 58, 101 (1998)
Yamanake S, Watanabe K, Applications of Bacterial Cellulose in Cellulosic Polymers, in a Gillbert (ed), Cellulosic Polymers, Blends and Composites, Hanser Inc., Cincinnati, OH, U S A. (1995)
Shibazaki H, Kuga S, Onabe F, Japan Tappi., 48, 1621 (1994)
Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature., 457, 706 (2009)
Son YJ, Sul OJ, Chung DK, Han IS, Choi YJ, Jeong CS, Kor. J. Appl. Microbiol. Biotechnol., 25, 346 (1997)
Son CJ, Chung SY, Lee JE, Kim SJ, J. Appl. Microbiol. Biotechnol., 12, 722 (2002)
Alexander WJ, Mitchell RL, Anal. Chem., 21, 1497 (1949)
Andrea CF, Solid State Commun., 143, 47 (2007)
Qi HS, Chang CY, Zhang LN, Cellulose., 15, 779 (2008)
Egal M, Budtova T, Navard PR, Cellulose., 15, 361 (2008)
Isogai AR, Saito TY, Fukuzumi HK, Nanoscale., 3, 71 (2011)