Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 8, 2013
Accepted June 3, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
우뭇가사리로부터 레불린산 생산공정을 위한 2단 산 가수분해
Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis
경기대학교 화학공학과, 443-760 경기도 수원시 영통구 이의동 산96-4
Department of Chemical Engineering, Kyonggi University, San 64-6 yiui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760, Korea
jskim84@kgu.ac.kr
Korean Chemical Engineering Research, August 2013, 51(4), 438-442(5), 10.9713/kcer.2013.51.4.438 Epub 23 July 2013
Download PDF
Abstract
현재 1,2세대 바이오매스에 비해 상대적으로 값싸며 대량생산이 가능한 3세대 바이오매스인 해조류를 이용하여 다양한 바이오화합물 생산에 관한 연구들이 주목받고 있다. 이러한 이유는 해조류는 다른 바이오매스에 비해 빨리 자라나고, 큰 장비 없이도 쉽게 수확할 수 있다는 장점뿐만 아니라 다양한 화합물로 전환할 수 있는 당이 풍부하고 공정을 통해 쉽게 전환할 수 있기 때문이다. 이러한 해조류부터 다양한 바이오화합물을 생산하는데 있어서 한 가지로 resins, plasticizers, textiles, animal feed, coatings, antifreeze의 상업화된 공정에 사용할 수 있는 레불린산(levulinic acid)이 있다. 본 연구에서는 해조류로부터 효과적으로 레불린산을 생산하는데 있어서 온도, 시간, 산의 농도의 실험조건과 2단산 처리 공정(two step acid treatment)을 통해 생산을 최적화 하는 조건을 탐색해 보았다. 첫번째 단계로는 상대적으로 저온에서 침지 공정을 통해 고상으로는 다양한 용도로 사용될 수 있는 셀룰로오스를 회수하고, 액상으로는 갈락토오스를 회수하였다. 2번째 단계로는 고온에서 회분식 공정을 통해 갈락토오스를 레불린산으로 전환하였다. 실험 결과 2단 산 처리 공정을 통해 초기바이오매스 기준 20.6%의 레불린산 수율을 확보하였다.
The study of bioproduct production from inexpensive biomass such as marine biomass has recently attracted considerable attention. Because, marine biomass which compared to land biomass, it can be grown rapidly and is easily cultivated without the need for expensive equipment. In addition, the carbohydrate contents are similar or higher than land biomass such as woody biomass and can be easily converted to chemicals through proper chemical processes. In the production of various biochemicals from marine biomass, levulinic acid is a highly versatile chemical with numerous industrial uses and has the potential to become a commodity chemical. It can be used as a raw material for resins, plasticizers, textiles, animal feed, coatings and antifreeze. In this study, experiments were carried out to determine the optimum conditions of temperature, acid concentration and reaction time for production of levulinic acid from marine biomass, Gelidium amansii, using two-step treatment. In the first hydrolysis step, solid-state cellulose which was used to produce ethanol by fermentation and liquid-state galactose which used to produce bioproduct such as levulinic aicd were obtained through acid soaking. In the second hydrolysis step, the liquid-state galactose was converted into levulinic acid via a high-temperature reaction in a batch reactor. As a result, the overall production yield of Gelidium amansii to levulinic acid in the two-step acid hydrolysis was approximately 20.6% on the initial biomass basis.
Keywords
References
Fang Q, Hanna MA, Bioresour. Technol., 81(3), 187 (2002)
Chheda JN, Yuriy RL, Dumesic JA, Green Chem., 9, 342 (2007)
Kim KS, Kim JS, Korean Chem. Eng. Res., 50(1), 18 (2012)
Jeong GT, Park DH, The Korean Society for Biotechnology and Bioengineering., 26, 341 (2011)
Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
Bozell JJ, Moens L, Elliott DC, Wang Y, Neusenswander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL, Resour. Conserv. Recycl., 28, 227 (2000)
Rosegrant and Mark, W. T., “Biofuels and Grain Prices,” International Food Policy Research Institute, USA (2008)
Park JY, Kang MS, Kim JS, Lee JP, Choi WI, Lee JS, Bioresour. Technol., 123, 702 (2012)
Kim TH, Korean J. Chem. Eng., 28(11), 2156 (2011)
Singh A, Nigam PS, Murphy JD, Bioresour. Technol., 102(1), 10 (2011)
Sluiter A, Sluiter J, “Summative Mass Closure,” NREL, NREL/TP-510-48087, 1-10, USA (2011)
Chheda JN, Yuriy RL, Dumesic JA, Green Chem., 9, 342 (2007)
Kim KS, Kim JS, Korean Chem. Eng. Res., 50(1), 18 (2012)
Jeong GT, Park DH, The Korean Society for Biotechnology and Bioengineering., 26, 341 (2011)
Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
Bozell JJ, Moens L, Elliott DC, Wang Y, Neusenswander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL, Resour. Conserv. Recycl., 28, 227 (2000)
Rosegrant and Mark, W. T., “Biofuels and Grain Prices,” International Food Policy Research Institute, USA (2008)
Park JY, Kang MS, Kim JS, Lee JP, Choi WI, Lee JS, Bioresour. Technol., 123, 702 (2012)
Kim TH, Korean J. Chem. Eng., 28(11), 2156 (2011)
Singh A, Nigam PS, Murphy JD, Bioresour. Technol., 102(1), 10 (2011)
Sluiter A, Sluiter J, “Summative Mass Closure,” NREL, NREL/TP-510-48087, 1-10, USA (2011)