Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 17, 2013
Accepted May 13, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응
Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts
CRI-Shell Global Solution, Shell Technology Center Houston, 3333 Highway 6 S, Houston, TX 77251, USA 1Department of Chemical Engineering, Yale University, 9 Hillhouse Ave, New Haven, CT 06511, USA
steven.lim2@cri-criterion.com
Korean Chemical Engineering Research, August 2013, 51(4), 443-454(12), 10.9713/kcer.2013.51.4.443 Epub 23 July 2013
Download PDF
Abstract
콜로이드 실리카와 가용성 실리카를 이용하여 나트륨이 첨가되지 않은 다양한 금속이온 첨가 MCM-41 촉매를 제조하였다. 전이금속 이온인 V5+, Co2+ 및 Ni2+이 MCM-41에 첨가되었을 경우 기공벽 내의 실리콘 이온과 등방치환을 하여 실리카 기공벽 내에서 독립된 단일 활성점을 형성하여 우수한 환원 및 활성 내구성을 보였다. 수소 승온 환원법을 이용하여 Co-MCM-41 촉매의 기공 곡률 반경효과에 대해 검토해 본 결과, 적절한 환원 처리와 기공 크기 및 pH 조절에 따라 코발트 금속입자의 크기를 1nm 이하의 범위에서 조절할 수 있었으며, 이 미세 금속 입자들은 표면 금속 이온들과의 결합으로 인해 상당한 고온 안정성이 있음을 발견하였다. 완전 환원 후에도 비정형 실리카의 부분 덮힘으로 인해 금속 입자들의 표면 이동 및 뭉침 현상이 현저히 저하되는 것을 볼 수 있었다. 이들 촉매의 반응 예로 금속 입자 크기에 민감한 단일층 탄소 나노튜브의 합성을 Co-MCM-41을 이용하여 실시하였고, 금속 입자의 안정성 시험반응으로 Co 및 Ni-MCM-41을 이용한 CO 메탄화 반응, V-MCM-41을 이용한 메탄올 및 메탄의 부분 산화반응 및 기공 곡률 반경이 촉매활성에 미치는 영향 등을 살펴보았다.
Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion.typically V5+, Co2+, and Ni2+.incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability_x000D_
in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-_x000D_
MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.
References
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature., 359, 710 (1992)
Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmit KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834 (1992)
Lim S, Ciuparu D, Chen Y, Yang YH, Pfefferle L, Haller GL, J. Phys. Chem. B, 109(6), 2285 (2005)
Lim S, Haller GL, J. Phys. Chem. B, 106(33), 8437 (2002)
Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA, Accounts Chem. Res., 38(4), 305 (2005)
Pena ML, Kan Q, Corma A, Rey F, Microporous Mesoporous Mater., 44, 9 (2001)
Lim S, Yang Y, Ciuparu D, Wang C, Chen Y, Pfefferle L, Haller GL, Top.Catal., 34, 31 (2005)
Lim S, Ciuparu D, Pak C, Dobek F, Chen Y, Harding D, Pfefferle L, Haller G, J. Phys. Chem. B, 107(40), 11048 (2003)
Kruk M, Jaroniec M, Sakamoto Y, Terasaki O, Ryoo R, Ko CH, J. Phys. Chem. B, 104(2), 292 (2000)
Morey M, Davidson A, Eckert H, Stucky G, Chem. Mater., 8, 486 (1996)
Yang YH, Du GA, Lim SY, Haller GL, J. Catal., 234(2), 318 (2005)
Lim SY, Wang C, Yang YH, Ciuparu D, Pfefferle L, Haller GL, Catal. Today, 123(1-4), 122 (2007)
Yang Y, Lim S, Wang C, Harding D, Haller GL, Microporous Mesoporous Mater., 67, 245 (2004)
Yang Y, Lim S, Wang C, Du G, Haller GL, Microporous Mesoporous Mater., 74, 133 (2004)
Yang Y, York JD, Xu J, Lim S, Chen Y, Haller GL, Microporous Mesoporous Mater., 86, 303 (2005)
Galeener FL, Solid State Commun., 44, 1037 (1982)
Feuston BP, Higgins JB, J. Phys. Chem., 98(16), 4459 (1994)
Reuel RC, Bartholomew CH, J. Catal., 85, 63 (1984)
Louis C, Cheng ZX, Che M, J. Phys. Chem., 97, 5703 (1993)
Tzou MS, Teo BK, Sachtler WMH, Langmuir., 2, 773 (1986)
Du GA, Lim S, Yang YH, Wang C, Pfefferle L, Haller GL, J. Catal., 249(2), 370 (2007)
Du GA, Lim SY, Yang YH, Wang C, Pfefferle L, Haller GL, Appl. Catal. A: Gen., 302(1), 48 (2006)
Ciuparu D, Chen Y, Lim S, Haller GL, Pfefferle L, J. Phys. Chem.B., 108, 503 (2003)
Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE, J. Catal., 204(1), 129 (2001)
Cheung CL, Kurtz A, Park H, Lieber CM, J. Phys. Chem. B, 106(10), 2429 (2002)
Li YM, Kim W, Zhang YG, Rolandi M, Wang DW, Dai HJ, J. Phys. Chem. B, 105(46), 11424 (2001)
Lim S, Li N, Fang F, Pinault M, Zoican C, Wang C, Fadel T, Pfefferle LD, Haller GL, J. Phys. Chem. C., 112, 12442 (2008)
Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmit KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834 (1992)
Lim S, Ciuparu D, Chen Y, Yang YH, Pfefferle L, Haller GL, J. Phys. Chem. B, 109(6), 2285 (2005)
Lim S, Haller GL, J. Phys. Chem. B, 106(33), 8437 (2002)
Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA, Accounts Chem. Res., 38(4), 305 (2005)
Pena ML, Kan Q, Corma A, Rey F, Microporous Mesoporous Mater., 44, 9 (2001)
Lim S, Yang Y, Ciuparu D, Wang C, Chen Y, Pfefferle L, Haller GL, Top.Catal., 34, 31 (2005)
Lim S, Ciuparu D, Pak C, Dobek F, Chen Y, Harding D, Pfefferle L, Haller G, J. Phys. Chem. B, 107(40), 11048 (2003)
Kruk M, Jaroniec M, Sakamoto Y, Terasaki O, Ryoo R, Ko CH, J. Phys. Chem. B, 104(2), 292 (2000)
Morey M, Davidson A, Eckert H, Stucky G, Chem. Mater., 8, 486 (1996)
Yang YH, Du GA, Lim SY, Haller GL, J. Catal., 234(2), 318 (2005)
Lim SY, Wang C, Yang YH, Ciuparu D, Pfefferle L, Haller GL, Catal. Today, 123(1-4), 122 (2007)
Yang Y, Lim S, Wang C, Harding D, Haller GL, Microporous Mesoporous Mater., 67, 245 (2004)
Yang Y, Lim S, Wang C, Du G, Haller GL, Microporous Mesoporous Mater., 74, 133 (2004)
Yang Y, York JD, Xu J, Lim S, Chen Y, Haller GL, Microporous Mesoporous Mater., 86, 303 (2005)
Galeener FL, Solid State Commun., 44, 1037 (1982)
Feuston BP, Higgins JB, J. Phys. Chem., 98(16), 4459 (1994)
Reuel RC, Bartholomew CH, J. Catal., 85, 63 (1984)
Louis C, Cheng ZX, Che M, J. Phys. Chem., 97, 5703 (1993)
Tzou MS, Teo BK, Sachtler WMH, Langmuir., 2, 773 (1986)
Du GA, Lim S, Yang YH, Wang C, Pfefferle L, Haller GL, J. Catal., 249(2), 370 (2007)
Du GA, Lim SY, Yang YH, Wang C, Pfefferle L, Haller GL, Appl. Catal. A: Gen., 302(1), 48 (2006)
Ciuparu D, Chen Y, Lim S, Haller GL, Pfefferle L, J. Phys. Chem.B., 108, 503 (2003)
Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE, J. Catal., 204(1), 129 (2001)
Cheung CL, Kurtz A, Park H, Lieber CM, J. Phys. Chem. B, 106(10), 2429 (2002)
Li YM, Kim W, Zhang YG, Rolandi M, Wang DW, Dai HJ, J. Phys. Chem. B, 105(46), 11424 (2001)
Lim S, Li N, Fang F, Pinault M, Zoican C, Wang C, Fadel T, Pfefferle LD, Haller GL, J. Phys. Chem. C., 112, 12442 (2008)