Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 16, 2013
Accepted June 14, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Chemical Manganese Dioxide (CMD) 합성에서의 Seed의 열처리 효과 및 그 CMD로부터 제조되는 LiMn2O4의 전지특성
Heat Treatment Effect of Seed on Synthesis of Chemical Manganese Dioxide (CMD) and Electrochemical Properties of LiMn2O4 obtained from the CMD
1한국세라믹기술원 에너지환경본부 에너지효율소재팀, 153-801 서울시 금천구 디지털로 10길 77 2인하대학교 화학공학과, 402-751 인천광역시 남구 인하로 100
1Energy Efficient Materials Team, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology, 77 Digital-ro 10-Gil, Guemchon-gu, Seoul 153-801, Korea 2Department of Chemical Engineering, Inha University Graduate School, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea
psm@kicet.re.kr
Korean Chemical Engineering Research, August 2013, 51(4), 460-464(5), 10.9713/kcer.2013.51.4.460 Epub 23 July 2013
Download PDF
Abstract
본 연구에서는 LiMn2O4 제조에서 Mn 원료로 사용되는 CMD를 seed 첨가법을 사용하여 제조하고자 하였으며, Seed의 열처리 온도가 CMD 합성에 미치는 영향을 고찰하고, 그로부터 제조되는 LiMn2O4의 전기화학적 특성을 평가하고자 하였다. 제조한 시료의 물성평가는 X-선 회절 분석법(XRD), 주사전자현미경(SEM)을 통하여 실시하였다. 그 결과, MnCO3를 300 ℃ 이상의 온도에서 열처리하여 seed로 사용할 경우 γ-MnO2 상의 CMD가 얻어졌으며, 그 CMD를 LMO 제조에 사용할 경우 전기화학적 특성이 비교적 우수한 LMO가 얻어졌다.
A series of Mn compound were prepared by seed-assisted method. The seed used in this reaction was manufactured by calcination of MnCO3 at various temperatures and effects of the calcination temperature on seed-assisted reaction were investigated. With increase of the calcination temperature, CMD (γ-MnO2) was recovered after seedassisted reactions. LMO used as cathode active material in the Li-ion batteries were synthesized from Mn source obtained in the seed-assisted reaction and the electrochemical properties (rate capability, cycle life performance and specific capacity) of the LMO were investigated. The LMO synthesized from the CMD which is obtained by the reaction with seed prepared by calcination of MnCO3 more than 350 ℃ shown good electrochemical properties.
Keywords
References
Whittingham MS, Chem. Rev., 104(10), 4271 (2004)
Armand M, Tarascon JM, Nature., 451, 652 (2008)
Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J, Energy Environ. Sci., 4, 1621 (2011)
Shim J, Kostecki R, Richardson T, Song X, Striebel KA, J. Power Sources, 112(1), 222 (2002)
Jiao F, Shaju KM, Bruce PG, Angew. Chem.-Int. Edit., 44, 6550 (2005)
Li XF, Xu YL, J. Solid State Electrochem., 12, 851 (2008)
Gnanaraj JS, Pol VG, Gedanken A, Aurbach D, Electrochem. Commun., 5, 940 (2003)
Hong YS, Han CH, Kim K, Kwon CW, Campet G, Choy JH, Solid State Ion., 139(1-2), 75 (2001)
Komaba S, Oikawa K, Myung ST, Kumagai N, Kamiyama T, Solid State Ion., 149(1-2), 47 (2002)
Amine K, Tukamoto H, Yasuda H, Fujita Y, J. Power Sources, 68(2), 604 (1997)
He XM, Li JJ, Cai Y, Jiang CY, Wan CR, Mater. Chem. Phys., 95(1), 105 (2006)
Lu W, Belharouak I, Park SH, Sun YK, Amine K, Electrochim. Acta, 52(19), 5837 (2007)
Eftekhari A, Solid State Ion., 167(3-4), 237 (2004)
Ferracin LC, Amaral FA, Bocchi N, Solid State Ion., 130(3-4), 215 (2000)
Chou SL, Cheng FY, Chen J, J. Power Sources, 162(1), 727 (2006)
Hill LI, Verbaere A, Guyomard D, J. Power Sources, 119, 226 (2003)
Lee JW, Kim JI, Roh KC, Park SM, Kim K, Solid State Sciences., 12, 1687 (2003)
Zhang SS, Jow TR, J. Power Sources, 109(1), 172 (2002)
Yang LX, Zhu YJ, Tong H, Wang WW, Ultrason. Sonochem., 14, 259 (2007)
Zhao JZ, Tao ZL, Liang J, Chen J, Cryst. Growth. Des., 8, 2799 (2008)
Yang ZH, Zhang WX, Wang Q, Song XM, Qian YT, Chem. Phys. Lett., 418(1-3), 46 (2006)
Pistoia G, Antonini A, Zane D, Pasquali M, J. Power Sources., 56, 37 (1995)
Armand M, Tarascon JM, Nature., 451, 652 (2008)
Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J, Energy Environ. Sci., 4, 1621 (2011)
Shim J, Kostecki R, Richardson T, Song X, Striebel KA, J. Power Sources, 112(1), 222 (2002)
Jiao F, Shaju KM, Bruce PG, Angew. Chem.-Int. Edit., 44, 6550 (2005)
Li XF, Xu YL, J. Solid State Electrochem., 12, 851 (2008)
Gnanaraj JS, Pol VG, Gedanken A, Aurbach D, Electrochem. Commun., 5, 940 (2003)
Hong YS, Han CH, Kim K, Kwon CW, Campet G, Choy JH, Solid State Ion., 139(1-2), 75 (2001)
Komaba S, Oikawa K, Myung ST, Kumagai N, Kamiyama T, Solid State Ion., 149(1-2), 47 (2002)
Amine K, Tukamoto H, Yasuda H, Fujita Y, J. Power Sources, 68(2), 604 (1997)
He XM, Li JJ, Cai Y, Jiang CY, Wan CR, Mater. Chem. Phys., 95(1), 105 (2006)
Lu W, Belharouak I, Park SH, Sun YK, Amine K, Electrochim. Acta, 52(19), 5837 (2007)
Eftekhari A, Solid State Ion., 167(3-4), 237 (2004)
Ferracin LC, Amaral FA, Bocchi N, Solid State Ion., 130(3-4), 215 (2000)
Chou SL, Cheng FY, Chen J, J. Power Sources, 162(1), 727 (2006)
Hill LI, Verbaere A, Guyomard D, J. Power Sources, 119, 226 (2003)
Lee JW, Kim JI, Roh KC, Park SM, Kim K, Solid State Sciences., 12, 1687 (2003)
Zhang SS, Jow TR, J. Power Sources, 109(1), 172 (2002)
Yang LX, Zhu YJ, Tong H, Wang WW, Ultrason. Sonochem., 14, 259 (2007)
Zhao JZ, Tao ZL, Liang J, Chen J, Cryst. Growth. Des., 8, 2799 (2008)
Yang ZH, Zhang WX, Wang Q, Song XM, Qian YT, Chem. Phys. Lett., 418(1-3), 46 (2006)
Pistoia G, Antonini A, Zane D, Pasquali M, J. Power Sources., 56, 37 (1995)