Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 19, 2013
Accepted August 16, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고분자전해질 연료전지용 Poly(arylene ether sulfone) 막의 특성
Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells
순천대학교 화학공학과, 540-742 전남 순천시 매곡동 315 1코오롱인더스트(주) Eco연구소 중앙기술원, 446-797 경기도 용인시 기흥구 마북동 207-2 2(주)CNLEnergy, 540-742 전남 순천시 매곡동 315
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon-si, Chonnam 540-742, Korea 1Kolon Research Institute, 207-2 Mabuk-dong, Giheung-gu, Youngin-si, Gyeonggi 446-797, Korea 2CNL Energy Co, 315 Maegok-dong, Suncheon-si, Chonnam 540-742, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, October 2013, 51(5), 556-560(5), 10.9713/kcer.2013.51.5.556 Epub 1 October 2013
Download PDF
Abstract
최근에 저가의 고분자전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구개발이 활발히 진행되고 있다. 본 연구에서는 PEMFC 운전 조건에서 Poly(arylene ether sulfone)(PAES) 막과 불소계막의 특성을 비교하였다. I-V 분극곡선, 수소투과도, 전기화학적 표면적, 막저항 및 부하 전달 저항 등을 측정·분석했다. PAES 막은 상대습도 100%에서는 불소계 막과 비슷한 성능을 보였으나 낮은 상대습도에서 이온전도도가 낮아 성능감소가 컸다.
Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of poly(arylene ether sulfone)(PAES) were compared with fluorinated membrane at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. PAES_x000D_
membrane showed similar performance compared with fluorinated membrane at 100% relative humidity, but the performance of PAES membrane decreased largely due to low ionic conductivity at low relative humidity.
Keywords
References
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Wilkinson DP, St-Pierre J, in: Vielstich W, H. A. Gasteiger A.Lamm (Eds.)., Handbook of Fuel Cell: Fundamen,tals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy., 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Steel BCH, Heinzel A, Nature., 414, 345 (2001)
Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
Hill ML, Kim YS, Einsla BR, McGrath JE, J. Membr. Sci., 283(1-2), 102 (2006)
Neburchilov V, Martin J, Wang HJ, Zhang JJ, J. Power Sources, 169(2), 221 (2007)
So SY, Yoon YJ, Kim TH, Yoon K, Hong YT, J. Membr. Sci., 381(1-2), 204 (2011)
Park JY, Kim TH, Kim HJ, Choi JH, Hong YT, Int. J. Hydrog. Energy., 37, 2603 (2012)
Lawrence J, Yamaguchi T, J. Membr. Sci., 325(2), 633 (2008)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Wilkinson DP, St-Pierre J, in: Vielstich W, H. A. Gasteiger A.Lamm (Eds.)., Handbook of Fuel Cell: Fundamen,tals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy., 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Steel BCH, Heinzel A, Nature., 414, 345 (2001)
Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
Hill ML, Kim YS, Einsla BR, McGrath JE, J. Membr. Sci., 283(1-2), 102 (2006)
Neburchilov V, Martin J, Wang HJ, Zhang JJ, J. Power Sources, 169(2), 221 (2007)
So SY, Yoon YJ, Kim TH, Yoon K, Hong YT, J. Membr. Sci., 381(1-2), 204 (2011)
Park JY, Kim TH, Kim HJ, Choi JH, Hong YT, Int. J. Hydrog. Energy., 37, 2603 (2012)
Lawrence J, Yamaguchi T, J. Membr. Sci., 325(2), 633 (2008)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)