Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 3, 2013
Accepted July 5, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
수상이성분계에 의한 1,3-프로판디올 추출특성에 대한 알콜과 카르복실산의 영향
Effect of Alcohols and Carboxylic Acids on Extraction Characteristics for 1,3-Propanediol by Aqueous Two Phases Systems
한국교통대학교 화공생물공학과, 380-702 충북 충주시 대학로 50
Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk 380-702, Korea
Korean Chemical Engineering Research, October 2013, 51(5), 575-579(5), 10.9713/kcer.2013.51.5.575 Epub 1 October 2013
Download PDF
Abstract
최근 바이오 플라스틱인 Polytrimethylene terephthalate (PTT)의 원료물질인 1,3-프로판디올의 생물학적 생산이 주목받고 있다. 발효를 통한 1,3-프로판디올의 생산에 있어 부산물로 생성되는 젖산, 숙신산을 포함한 카르복실산들은 1,3-프로판디올의 경제적인 생산을 어렵게 한다. 본 연구에서는 카르복실산 부산물이 포함된 1,3-프로판디올 수용액으로부터 1,3-프로판디올의 효율적 분리정제를 위해 수용성 알콜과 염으로 구성된 수상이성분계를 이용한 추출을 적용하였다. 알콜과 염으로 구성된 수상이성분계 형성은 하부상에 존재하는 염의 염출효과에 의한 것이며 이로 인해 1,3-프로판디올이 상부상으로 이동된다. 추출효율을 알콜의 사슬길이가 짧을수록, 염의 세기가 높을수록 높아졌으며 최대 98%의 회수율을 얻을 수 있었다. 또한 발효 시에 부산물로 형성되는 카르복실산은 1,3-프로판디올과 동반추출되지 않았으며 1,3-프로판디올의 추출효율에도 영향이 없는 것으로 나타났다. 그러므로 본 연구에서 적용된 친수성 알콜과 염으로 구성된 수상이성분계는 카르복실산 부산물로부터 1,3-프로판디올을 선택적으로 분리하는데 효과적임을 알 수 있다.
1,3-Propandiol is a promising chemical which can be produced from fermentation of glycerol because the application of 1,3-propanediol is mainly in the production of bio-polytrimethylene terephthalate (bio-PTT). However, the cost of downstream processes in the biological production of 1,3-propanediol can make a high portion in the total production cost due to the large amount of water and the by-produced carboxylic acids such as succinic, lactic and acetic acids in 1,3-propanediol fermentation broth. In this study, aqueous two-phases systems composed of_x000D_
hydrophilic alcohols and phosphate salts were applied to the recovery of 1,3-propanediol from its artificial aqueous solution. Formation of aqueous biphases in hydrophilic alcohols and phosphate salts was due to the salting-out effect of salts in bottom phase, thereby 1,3-propanediol in bottom phase was moved into top phase. Extraction efficiency for 1,3-propanediol was proportional to the polarity of hydrophilic alcohols and the basicity of salts and the maximum value of extraction efficiency was more than 98%. In the aqueous two-phases systems after extraction, there was no carboxylic acid in top phase. Therefore, it was concluded that the aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were effective for the selective recovery of 1,3-propanediol without any coextraction of carboxylic acids.
References
http://www.marketsandmarkets.com/Market-Reports/1-3-propanediolpdo-market-760.html.
Kaur G, Srivastava AK, Chand S, Biochem. Eng. J., 64, 106 (2012)
Li ZG, Jiang B, Zhang DJ, Xiu ZL, Sep. Purif. Technol., 66(3), 472 (2009)
Hao J, Xu F, Liu HJ, Liu DH, J. Chem. Technol. Biotechnol., 81(1), 102 (2006)
Hong YK, Korean Chem. Eng. Res., 50(5), 759 (2012)
Wu RC, Xu YZ, Song YQ, Luo JA, Liu D, Sep. Purif. Technol., 83, 9 (2011)
Xiu ZL, Zeng AP, Appl. Microbiol. Biotechnol., 78(6), 917 (2008)
Malinowski JJ, Biotechnol. Prog., 16(1), 76 (2000)
Jiang B, Li ZG, Dai JY, Zhang DJ, Xiu ZL, Process Biochem., 44, 112 (2009)
Wu RC, Ren HJ, Xu YZ, Liu DH, Sep. Purif. Technol., 73(2), 122 (2010)
Chen Z, Liu HJ, Liu DH, Enzyme Microb. Technol., 45(4), 305 (2009)
Mourao T, Claudio AFM, Boal-Palheiros I, Freire MG, Coutinho JAP, J. Chem. Thermodyn., 54, 398 (2012)
Navapara RD, Avhad DN, Rathod VK, Sep. Sci. Technol., 46(11), 1838 (2011)
Kaur G, Srivastava AK, Chand S, Biochem. Eng. J., 64, 106 (2012)
Li ZG, Jiang B, Zhang DJ, Xiu ZL, Sep. Purif. Technol., 66(3), 472 (2009)
Hao J, Xu F, Liu HJ, Liu DH, J. Chem. Technol. Biotechnol., 81(1), 102 (2006)
Hong YK, Korean Chem. Eng. Res., 50(5), 759 (2012)
Wu RC, Xu YZ, Song YQ, Luo JA, Liu D, Sep. Purif. Technol., 83, 9 (2011)
Xiu ZL, Zeng AP, Appl. Microbiol. Biotechnol., 78(6), 917 (2008)
Malinowski JJ, Biotechnol. Prog., 16(1), 76 (2000)
Jiang B, Li ZG, Dai JY, Zhang DJ, Xiu ZL, Process Biochem., 44, 112 (2009)
Wu RC, Ren HJ, Xu YZ, Liu DH, Sep. Purif. Technol., 73(2), 122 (2010)
Chen Z, Liu HJ, Liu DH, Enzyme Microb. Technol., 45(4), 305 (2009)
Mourao T, Claudio AFM, Boal-Palheiros I, Freire MG, Coutinho JAP, J. Chem. Thermodyn., 54, 398 (2012)
Navapara RD, Avhad DN, Rathod VK, Sep. Sci. Technol., 46(11), 1838 (2011)