Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 7, 2013
Accepted August 9, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조
Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion
충남대학교 화학공학과, 305-764 대전 유성구 궁동 220
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
rhadum@cnu.ac.kr
Korean Chemical Engineering Research, October 2013, 51(5), 597-601(5), 10.9713/kcer.2013.51.5.597 Epub 1 October 2013
Download PDF
Abstract
본 연구는 액적기반 미세유체 장치를 이용하여 단분산성 마이크로캡슐의 간단한 제조방법에 관한 것이다. 본 연구에서 제시한 제조 방법은 이중액적을 생성시키기 위해 기존의 복잡한 표면처리가 필요한 이중 유화과정을 대신하여 하나의 교차점을 가진 단일공정을 사용하고자 한다. 먼저, 분산상은 광중합이 가능한 ethoxylated trimethylolpropane triacrylate (ETPTA) 단량체와 fluorocarbon (FC-77) 오일을 사용하고 연속상은 poly(vinyl alcohol) (PVA) 수용액을 사용하였으며, 미세유체 채널 내부로 흘려 주면 하나의 교차점에 흐름이 집중되어 균일한 이중액적을 생성한다. 생성된 이중액적은 광중합을 통해 마이크로캡슐을 제조한다. 상기 방법은 ETPTA 유체의 부피유속을 조절하여 이중액적의 껍질 두께 제어가 가능하고 연속상인 물의 부피유속을 조절하여 전체 직경을 제어할 수 있다. 더 나아가, 본 시스템을 사용하여 다양한 물질들을 함입한 마이크로캡슐을 제작할 수 있으며, 약물전달시스템의 응용 기술에 활용될 것으로 예측된다.
In this study, we present simple microfluidic approach for the synthesis of monodisperse microcapsules by using droplet-based system. We generate double emulsion through single step in the microfluidic device having single junction while conventional approaches are limited in surface treatment for the generation of double emulsion. First, we have injected disperse fluid containing FC-77 oil and photocurable ethoxylated trimethylolpropane triacrylate (ETPTA) and water containing 3 wt% poly(vinyl alcohol) (PVA) as continuous phase into microfluidic device. Under the condition, we easily generate double emulsion with high monodispersity by using flow focusing. The double emulsion droplets are transformed into microcapsules under the UV irradiation via photopolymerization. In addition, we control thickness of double emulsion’s shell by controlling flow rate of ETPTA. We also show that the size of double emulsions can be controlled by manipulation of flow rate of continuous phase. Furthermore, we synthesize microcapsules encapsulating various materials for the application of drug delivery systems.
References
Hennequin Y, Pannacci N, de Torres CP, Tetradis-Meris G, Chapuliot S, Bouchaud E, Tabeling P, Langmuir, 25(14), 7857 (2009)
Freiberg S, Zhu X, Int. J. Pharm., 282(1-2), 1 (2004)
Ichikawa H, Fukumori Y, J. Control., 63(1-2), 107 (2000)
Yoshida K, Sekine T, Matsuzaki F, Yanaki T, Yamaguchi M, J. Am. Oil. Chem. Soc., 76(2), 195 (1999)
Vasiljevic D, Parojcic J, Primorac M, Vuleta G, Int. J. Pharm., 309(1-2), 171 (2006)
Elsoda M, Pannell L, Olson N, J.Microencapsul., 6(3), 319 (1989)
Bonilla E, Azuara E, Beristain CI, Vernon-Carter EJ, Food Hydrocolloids., 24(6-7), 633 (2010)
Esser-Kahn AP, Sottos NR, White SR, Moore JS, J. Am. Chem. Soc., 132(30), 10266 (2010)
Kurayama F, Yoshikawa T, Furusawa T, Bahadur NM, Handa H, Sato M, Suzuki N, Bioresour. Technol., 135, 652 (2013)
Chen PW, Erb RM, Studart AR, Langmuir, 28(1), 144 (2012)
Nisisako T, Chem. Eng. Technol., 31(8), 1091 (2008)
Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545 (2010)
Anna SL, Bontoux N, Stone HA, Appl. Phys.Lett., 82(3), 364 (2003)
Xu SQ, Nie ZH, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM, Angew. Chem.-Int.Edit., 44(5), 724 (2005)
Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS, Biomed.Microdevices., 9(6), 855 (2007)
Choi CH, Jung JH, Hwang TS, Lee CS, Macromol. Res., 17(3), 163 (2009)
Jung JH, Choi CH, Hwang TS, Lee CS, Biochip J., 3(1), 44 (2009)
Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA, Science., 308(5721), 537 (2005)
Kang SM, Choi CH, Hwang S, Jung JM, Lee CS, Korean Chem. Eng. Res., 50(4), 733 (2012)
Deng NN, Meng ZJ, Xie R, Ju XJ, Mou CL, Wang W, Chu LY, Lab Chip., 11(23), 3963 (2011)
Abate AR, Weitz DA, Small., 5, 2030 (2009)
Hwang S, Choi CH, Lee CS, Macromol. Res., 20(4), 422 (2012)
Bauer WAC, Fischlechner M, Abell C, Huck WTS, Lab Chip., 10(14), 1814 (2010)
Hwang S, Choi CH, Kim HC, Kim IH, Lee CS, Polym.(Korea), 36(2), 177 (2012)
Harry RA, James FWL, Mark E, Contemporary Polymer Chemistry. 3rd ed., Prentice Hall, Englewood Cliffs, NJ (2003)
Karapanagiotis I, Gerberich WW, Surf. Sci., 594(1-3), 192 (2005)
Choi CH, Yi H, Hwang S, Weitz DA, Lee CS, Lab Chip., 11(8), 1477 (2011)
Kim SH, Abbaspourrad A, Weitz DA, J. Am. Chem. Soc., 133(14), 5516 (2011)
Choi CH, Jung JH, Lee CS, Korean Chem. Eng. Res., 48(4), 470 (2010)
Freiberg S, Zhu X, Int. J. Pharm., 282(1-2), 1 (2004)
Ichikawa H, Fukumori Y, J. Control., 63(1-2), 107 (2000)
Yoshida K, Sekine T, Matsuzaki F, Yanaki T, Yamaguchi M, J. Am. Oil. Chem. Soc., 76(2), 195 (1999)
Vasiljevic D, Parojcic J, Primorac M, Vuleta G, Int. J. Pharm., 309(1-2), 171 (2006)
Elsoda M, Pannell L, Olson N, J.Microencapsul., 6(3), 319 (1989)
Bonilla E, Azuara E, Beristain CI, Vernon-Carter EJ, Food Hydrocolloids., 24(6-7), 633 (2010)
Esser-Kahn AP, Sottos NR, White SR, Moore JS, J. Am. Chem. Soc., 132(30), 10266 (2010)
Kurayama F, Yoshikawa T, Furusawa T, Bahadur NM, Handa H, Sato M, Suzuki N, Bioresour. Technol., 135, 652 (2013)
Chen PW, Erb RM, Studart AR, Langmuir, 28(1), 144 (2012)
Nisisako T, Chem. Eng. Technol., 31(8), 1091 (2008)
Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545 (2010)
Anna SL, Bontoux N, Stone HA, Appl. Phys.Lett., 82(3), 364 (2003)
Xu SQ, Nie ZH, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM, Angew. Chem.-Int.Edit., 44(5), 724 (2005)
Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS, Biomed.Microdevices., 9(6), 855 (2007)
Choi CH, Jung JH, Hwang TS, Lee CS, Macromol. Res., 17(3), 163 (2009)
Jung JH, Choi CH, Hwang TS, Lee CS, Biochip J., 3(1), 44 (2009)
Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA, Science., 308(5721), 537 (2005)
Kang SM, Choi CH, Hwang S, Jung JM, Lee CS, Korean Chem. Eng. Res., 50(4), 733 (2012)
Deng NN, Meng ZJ, Xie R, Ju XJ, Mou CL, Wang W, Chu LY, Lab Chip., 11(23), 3963 (2011)
Abate AR, Weitz DA, Small., 5, 2030 (2009)
Hwang S, Choi CH, Lee CS, Macromol. Res., 20(4), 422 (2012)
Bauer WAC, Fischlechner M, Abell C, Huck WTS, Lab Chip., 10(14), 1814 (2010)
Hwang S, Choi CH, Kim HC, Kim IH, Lee CS, Polym.(Korea), 36(2), 177 (2012)
Harry RA, James FWL, Mark E, Contemporary Polymer Chemistry. 3rd ed., Prentice Hall, Englewood Cliffs, NJ (2003)
Karapanagiotis I, Gerberich WW, Surf. Sci., 594(1-3), 192 (2005)
Choi CH, Yi H, Hwang S, Weitz DA, Lee CS, Lab Chip., 11(8), 1477 (2011)
Kim SH, Abbaspourrad A, Weitz DA, J. Am. Chem. Soc., 133(14), 5516 (2011)
Choi CH, Jung JH, Lee CS, Korean Chem. Eng. Res., 48(4), 470 (2010)