Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 7, 2013
Accepted July 4, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향
Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method
1한국세라믹기술원 에너지환경소재본부 에코복합소재센터, 153-801 서울시 금천구 디지털로 10길 77 2고려대학교 화공생명공학과, 136-709 서울시 성북구 안암동 5가 1
1Eco-Composite Materials Center, Energy Environment Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET), 77 Digital-ro 10-Gil, Guemcheon-gu, Seoul 153-801, Korea 2Department of Chemical & Biological Engineering, Korea University, 1 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea
shlee@kicet.re.kr
Korean Chemical Engineering Research, October 2013, 51(5), 622-627(6), 10.9713/kcer.2013.51.5.622 Epub 1 October 2013
Download PDF
Abstract
콜로이달 실리카는 실리콘과 사파이어 웨이퍼의 정밀연마슬러리, 유-무기 하이브리드 코팅제, 정밀주조의 바인더 등 다양한 제품으로 사용되는 물질이다. 이러한 실리카 졸의 입자크기 및 분산 안정성은 웨이퍼의 표면, 코팅 막 혹은 벌크의 기계적, 화학적, 광학적 특성에 영향을 주기 때문에 정확한 측정값이 요구된다. 본 연구에서는 제조사에서 제시한 입자 크기 및 표면 특성이 다른 8종류 실리카 졸의 부피 분율에 따라 입자 크기, 졸 점도 및 입자 전기영동이동도의 측정결과에 미치는 영향을 논의하였다. 높은 표면활성을 지닌 실리카 입자의 특성 및 실리카 졸의 희석에 의한 안정화 이온 농도의 변화로 인해 실리카의 측정 입자 크기와 이동도는 졸의 부피 분율 혹은 입자 크기에 따라 변한다. 60 nm 보다 작은 입자는 부피 분율이 증가함에 따라 측정된 입자 크기가 증가한 반면에, 그 보다 큰 입자에서는 측정된 입자 크기가 감소하였다. 12 nm와 같이 작은 입자는 부피 분율이 증가함에 따라 점도가 상승하면서 측정 입자의 이동도가 감소한 반면에 100 nm의 큰 입자는 0.048의 낮은 부피 분율까지 이동도가 증가하다가 그보다 높은 부피 분율부터 감소하였다.
Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased_x000D_
with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.
References
Changjin C, “China Silicon Industry,” CRCSI, China, 3(6), 14 (2010)
Cintre M, Cambon S, Leclerc D, Dodds J, Anal. Chem., 58, 86 (1986)
Xu R, Particuology., 6, 112 (2008)
Jaeger N, Demeyere H, Finsy R, Sneyers R, Vanderdeelen J, Meeren P, Laethem M, Part. Part. Syst. Charact., 8, 179 (1991)
Tantra R, Schulze P, Quincey P, Particuology., 8, 279 (2010)
Adamczyk Z, Jachimska B, Kolasinska M, J. Colloid Interface Sci., 273(2), 668 (2004)
Viota JL, Rasa M, Sacanna S, Philipse AP, J. Colloid Interface Sci., 290(2), 419 (2005)
ISO Reference, “Particle Size Analysis-Photon Corelation Spectroscopy," ISO 13321 (1996)
DLS technical note MRK656-01, Malvern Instruments Ltd.
Paik U, Kim JY, Hackley VA, Mater. Chem. Phys., 91(1), 205 (2005)
Quemada D, Berli C, Adv. Colloid Interface Sci., 98, 51 (2002)
O'Brien RW, White LR, J. Chem. Soc. Farad. Trans. II., 74, 1607 (1978)
Mondragon R, Julia JE, Barba A, Jarque JC, Chem.Eng. Sci., 80, 119 (2012)
Lobaskin V, Dunweg B, Medebach M, Palberg T, Holm C, Phys. Rev. Lett., 176105-1, 98 (2007)
Barnes HA, Hutton JF, Walters K, Rheology Series., Elsevier, 3, 120 (1989)
Cintre M, Cambon S, Leclerc D, Dodds J, Anal. Chem., 58, 86 (1986)
Xu R, Particuology., 6, 112 (2008)
Jaeger N, Demeyere H, Finsy R, Sneyers R, Vanderdeelen J, Meeren P, Laethem M, Part. Part. Syst. Charact., 8, 179 (1991)
Tantra R, Schulze P, Quincey P, Particuology., 8, 279 (2010)
Adamczyk Z, Jachimska B, Kolasinska M, J. Colloid Interface Sci., 273(2), 668 (2004)
Viota JL, Rasa M, Sacanna S, Philipse AP, J. Colloid Interface Sci., 290(2), 419 (2005)
ISO Reference, “Particle Size Analysis-Photon Corelation Spectroscopy," ISO 13321 (1996)
DLS technical note MRK656-01, Malvern Instruments Ltd.
Paik U, Kim JY, Hackley VA, Mater. Chem. Phys., 91(1), 205 (2005)
Quemada D, Berli C, Adv. Colloid Interface Sci., 98, 51 (2002)
O'Brien RW, White LR, J. Chem. Soc. Farad. Trans. II., 74, 1607 (1978)
Mondragon R, Julia JE, Barba A, Jarque JC, Chem.Eng. Sci., 80, 119 (2012)
Lobaskin V, Dunweg B, Medebach M, Palberg T, Holm C, Phys. Rev. Lett., 176105-1, 98 (2007)
Barnes HA, Hutton JF, Walters K, Rheology Series., Elsevier, 3, 120 (1989)