Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 23, 2013
Accepted October 8, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
유기산에 의한 인듐스크랩에서 고순도 인듐옥살산염의 제조
Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids
부경대학교 방위과학기술연구소, 608-739 부산시 남구 신선로 365 1부경대학교 화학공학과, 608-739 부산시 남구 신선로 365
Institute of Defense Science & Technology, Pukyoung National University, 365 Sinseon-ro, Nam-Gu, Busan 608-739, Korea 1Department of Chemical Engineering, Pukyoung National University, 365 Sinseon-ro, Nam-Gu, Busan 608-739, Korea
csju@pknu.ac.kr
Korean Chemical Engineering Research, December 2013, 51(6), 661-665(5), 10.9713/kcer.2013.51.6.661 Epub 2 December 2013
Download PDF
Abstract
ITO glass 제조공정에서 발생되는 인듐스크랩으로부터 인듐옥살산염의 제조에서 유기산의 영향을 연구하였다. 유기산의 종류, 농도 그리고 반응액의 pH, 온도, 시간 등을 변화시키면서 인듐옥살산염 제조에 미치는 영향을 조사하였다. 불순물 제거 효율은 구연산 및 옥살산 모두 비슷하였으나 구연산은 인듐과 유기산염을 형성하지 못하였다. 인듐옥살산염 제조의 최적 조건은 옥살산 농도 1.5M, pH 7, 반응온도 80 ℃, 반응시간 6시간이었다. 한편, pH가 증가하면 회수율은 증가하지만, 순도는 감소하였다. 2회 반복으로 제조된 인듐옥살산염의 순도는 99.995% (4N5)를 나타내었다. 인듐옥살산염은 치환반응, 소성 등에 의해 인듐금속 및 인듐산화물 등으로 전환할 수 있다.
Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 oC, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination.
References
Alfantazi AM, Moskalyk PR, Miner. Eng., 16, 687 (2003)
Jorgenson JD, Goorge MW, “Mineral Commodity Profile-Indium,” USGS, 80-81 (2005)
Hong SJ, Electro. Parts & Comp., 12, 70 (2008)
An JH, The Kor. Infor.Disp. Soc., 11(5), 33 (2010)
Kenneth NH, J. of Kor.Inst. of Reso. Recy., 10(5), 3 (2001)
Kenneth NH, Kondoju S, Park KW, Kang HM, Geosystem Eng., 5(4), 93 (2002)
Barakat MK, Hydrometallurgy., 49, 63 (1998)
Park SK, Roh YM, Lee SG, Kim Y, Shin, CH, Ahn JW, RIST., 21(4), 352 (2007)
Paiva AP, Sep. Sci. Technol., 36(7), 1395 (2001)
Kwon TN, Jeon C, Korean J. Chem. Eng., 29(12), 1730 (2012)
Lee JC, Shin DY, Pandey BD, Yoo KK, The Kor. Soc. of Miner. and Ene. Reso. Eng., 48(3), 383 (2011)
Lee BG, Choi JS, Appl. Chem. Eng. Res., 45(2), 203 (2007)
Sung MH, Kim WS, Kim JS, J. of the Kor. Inst. of Chem. Eng., 36(4), 510 (1998)
Jorgenson JD, Goorge MW, “Mineral Commodity Profile-Indium,” USGS, 80-81 (2005)
Hong SJ, Electro. Parts & Comp., 12, 70 (2008)
An JH, The Kor. Infor.Disp. Soc., 11(5), 33 (2010)
Kenneth NH, J. of Kor.Inst. of Reso. Recy., 10(5), 3 (2001)
Kenneth NH, Kondoju S, Park KW, Kang HM, Geosystem Eng., 5(4), 93 (2002)
Barakat MK, Hydrometallurgy., 49, 63 (1998)
Park SK, Roh YM, Lee SG, Kim Y, Shin, CH, Ahn JW, RIST., 21(4), 352 (2007)
Paiva AP, Sep. Sci. Technol., 36(7), 1395 (2001)
Kwon TN, Jeon C, Korean J. Chem. Eng., 29(12), 1730 (2012)
Lee JC, Shin DY, Pandey BD, Yoo KK, The Kor. Soc. of Miner. and Ene. Reso. Eng., 48(3), 383 (2011)
Lee BG, Choi JS, Appl. Chem. Eng. Res., 45(2), 203 (2007)
Sung MH, Kim WS, Kim JS, J. of the Kor. Inst. of Chem. Eng., 36(4), 510 (1998)