ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 7, 2013
Accepted September 2, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

맥주 폐 효모액의 당화 및 에탄올 발효능

Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth

경북대학교 화학공학과, 702-701 대구시 북구 대학로 80 1계명대학교 화학공학과, 704-701 대구시 달서구 달구벌대로 1095
Department of Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea 1Department of Chemical Engineering, Keimyung University, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu 704-701, Korea
parkjk@knu.ac.kr
Korean Chemical Engineering Research, December 2013, 51(6), 709-715(7), 10.9713/kcer.2013.51.6.709 Epub 2 December 2013
downloadDownload PDF

Abstract

맥주 폐 효모액(waste from beer fermentation broth, WBFB)은 바이오 에탄올 생산을 위한 우수하고 저렴한 원료이다. 본 연구에서는 바이오 에탄올 생산을 위해 WBFB의 당화능과 발효능을 확인하는 실험을 진행하였다. 당화능은 온도를 30, 40, 50, 60, 70 ℃로 다르게 하여 실험했는데 온도가 올라감에 따라 당화능은 증가하였고 4시간 후 60 ℃와 70 ℃에서 많은 양의 glucose가 생산되었다. WBFB와 chemically defined media (CDM) 혼합물에서는 어떠한 미생물의 첨가 없이도 발효가 되어 에탄올이 생산되었다. 동시당화발효능을 30, 40, 50, 60 ℃의 다양한 온도에서 실험해본 결과 30 ℃에서 에탄올이 가장 많이 생산되었다. 또 이 실험은 WBFB, starch 용액 그리고 CDM을 이용하여 수행하였는데 WBFB에 있는 당화 효소와 효모가 어떠한 추가적 미생물 첨가 없이 당화와 발효를 가능케 하는 요인이었다.
The waste from beer fermentation broth (WBFB) has been found an excellent and inexpensive resource for bioethanol production. We tried to evaluate the saccharification and fermentation capabilities of WBFB to confirm its effectiveness for bioethanol production. The saccharification potentials of the WBFB were evaluated at various temperatures (30, 40, 50, 60and 70 ℃). It was found that the saccharification capabilities increased with temperature and highest reached maximum at 60 ℃ and 70 ℃ after 4h. Ethanol production from a mixture of WBFB and chemically defined media (CDM) without addition of any microbial species confirmed the fermentation capabilities of WBFB. Simultaneous saccharification and fermentation were performed using WBFB, starch solution and CDM as culturing media. The maximum yield of bioethanol production was obtained at 30 ℃. The saccharifying enzymes and the yeast cells present in WBFB were essential factors for the production of bioethanol from WBFB without any additional enzymes or microbial cells.

References

Mei XY, Liu RH, Shen F, Wu HJ, Energy Fuels, 23(1), 487 (2009)
Prasad S, Singh A, Jain N, Joshi HC, Energy Fuels, 21(4), 2415 (2007)
Semelsberger TA, Borup RL, Greene HL, J. Power Sources, 156(2), 497 (2006)
Song HS, Ramkrishna D, Korean J. Chem. Eng., 27(2), 576 (2010)
Ha JH, Gang MK, Khan T, Park JK, Korean J. Chem. Eng., 29(9), 1224 (2012)
Ha JH, Shah N, Ul-Islam M, Park JK, Enzyme Microb. Technol., 49(3), 298 (2011)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Akpan UG, Alhakim AA, Ijah UJJ, Leonardo Electronic Journal of Practices and Technologies., 7, 1 (2008)
Asrar GR, America’s farms: Growing food, fiber, fuel - and more, Agricultural Research, 55, 2 (2007)
Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK, Korean J. Chem. Eng., 25(4), 812 (2008)
Kim SH, Yoo YD, Kang KH, Park JW, Journal of Energy & Climate Change., 4, 20 (2009)
Khan T, Hyun SH, Park JK, Enzyme Microb. Technol., 42(1), 89 (2007)
Khattak WA, Kang MK, Ul-Islam M, Park JK, Bioprocess.Biosyst. Eng., 36, 737 (2013)
Khattak WA, Khan T, Ha JH, Ul-Islam M, Kang MK, Park JK, Enzyme Microb. Technol., 53(5), 322 (2013)
Balata M, Balata H, Cahide O, Prog. Energy Combust. Sci., 34, 551 (2008)
Baras J, Gae S, Pejin D, Chem. Ind., 56, 89 (2002)
HID Global Co., Optimizing Efficiency, Economy, and Traceability in Waste Management, Technology Basics White Paper (2009)
Kim S, Dale BE, Biomass Bioenerg., 26(4), 361 (2004)
Choi GW, Moon SK, Kang HW, Min J, Chung BW, J. Chem. Technol. Biotechnol., 84(4), 547 (2009)
Hammond JB, Egg R, Diggins D, Coble CG, Bioresour. Technol., 56(1), 125 (1996)
Khattak WA, Ul-Islam M, Park JK, Korean J. Chem. Eng., 29(11), 1467 (2012)
Kim SH, Yu YD, Kang KH, Park JW, Journal of Energy & Climate Change., 4(1), 20 (2009)
Na JB, Kim JS, Korean Chem. Eng. Res., 46(5), 858 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로