Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 10, 2013
Accepted November 7, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
역오팔 구조 지지체를 이용한 인간 지방 유래 줄기 세포의 연골 분화 촉진
Enhanced Chondrogenic Differentiation of Human Adipose-derived Stem Cells with Inverse Opal Scaffolds
세인트루이스워싱턴대학교 생물의공학과, MO 63130미국 세인트루이스 1경희대학교 화학공학과, 446-701 경기도 용인시 기흥구 서천동 1
Department of Biomedical Engineering Washington University, Saint Louis, MO 63130, USA 1Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seocheon-dong, Kiheung-gu, Yongin, Gyeonggi 446-701, Korea
Korean Chemical Engineering Research, December 2013, 51(6), 727-732(6), 10.9713/kcer.2013.51.6.727 Epub 2 December 2013
Download PDF
Abstract
본 연구는 역오팔 지지체를 이용하여 인간지방유래 줄기세포의 연골 분화를 촉진하는 내용을 담고 있다. 비 다공성 구조를 가진 지지체에서 세포를 분화 시도하였을 경우 분화가 잘 촉진되지 않는 것에 비해 200 nm 정도의 균일한 구멍을 가지는 poly(D,L-lactide-co-glycolide)로 구성된 역오팔 지지체는 그 다공성 구조로 인하여 지지체의 내부까지 산소와 유기물의 수송을 가능하게 하여 지지체 내에서 어떤 유전적, 약물적 처리 없이 인간지방유래 줄기세포가 분화가 잘 되게 하는 것을 확인하였다.
In this report, we present an inverse opal scaffold that can enhance the chondrogenic differentiation of human adipose-derived stem cells (hADSCs) without drug, gene, or cytokine supplement. Inverse opal scaffolds based on poly(D,L-lactide-co-glycolide) were formed with uniform 200 μm pores. Due to uniform pore sizes and well-controlled interconnectivity of inverse opal scaffold, hADSCs were allowed to distribute homogeneously throughout the scaffolds. As a result, high cell density culture with scaffold was possible. Since the hADSCs cultured in inverse opal scaffolds were subjected to limited supplies of oxygen and nutrients, these cells were naturally preconditioned to a hypoxic environment that stimulated the up-regulation of hypoxia-inducible factor-1α (HIF-1α). As a result, apoptotic activity of hADSCs until 3 weeks after initial cell seeding was significantly reduced and chondrogenic differentiation related molecular signal cascades were up regulated (transforming growth factor-beta, phosphorylated AKT, and phosphorylated p38 expression). In contrast, hADSCs cultured with small and non-uniform porous scaffolds showed significantly increased apoptotic activity with decreased chondrogenic differentiation. Taken together, inverse opal scaffold could potentially be used as an effective tool for improving chondrogenesis using stem cells.
Keywords
References
Lee CR, Grodzinsky AJ, Hsu HP, Martin SD, Spector M, 18, 790 (2000)
Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C, Biochimie., 87, 125 (2005)
Casteilla L, Planat-Benard V, Cousin B, Silvestre JS, Laharrague P, Charrie`re G, Penicaud L, Arch. Mal. Coeur. Vaiss., 98, 922 (2005)
Oedayrajsingh-Varma M, Ham SV, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, Milligen FJV, Cytotherapy., 8, 166 (2006)
Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS, Tissue Eng., 18, 1949 (2012)
Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH, Tissue Eng., 13, 659 (2007)
Park SJ, Kim SH, Hong SK, HWAHAK KONGHAK, 41(4), 497 (2003)
Lee MJ, Seo DY, Lee HE, Choi GJ, Korean J. Chem. Eng., 28(6), 1406 (2011)
Yoo DJ, J. Kor. Soc. Prec. Eng., 28, 834 (2011)
Shin YM, Shin H, Polym. Sci. Technol., 18(5), 458 (2007)
Choi SW, Zhang Y, Xia YN, Langmuir, 26(24), 19001 (2010)
Oh MJ, Moon SK, Kim SE, Choi SW, Biomaterials Research., 17, 126 (2013)
Zhang Y, Choi SW, Xia YN, Macromol. Rapid Commun., 33(4), 296 (2012)
Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E, Development, 134, 3917 (2007)
Murphy CL, Polak JM, J. Cell Physiol., 199, 451 (2004)
Sekiya I, Tsuji, K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M, J. Biol. Chem., 275, 10738 (2000)
Oh CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS, J. Biol. Chem., 275, 5613 (2000)
Kanichai M, Ferguson D, Prendergast PJ, Campbell VA, J. Cell Physiol., 216, 708 (2008)
Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C, Biochimie., 87, 125 (2005)
Casteilla L, Planat-Benard V, Cousin B, Silvestre JS, Laharrague P, Charrie`re G, Penicaud L, Arch. Mal. Coeur. Vaiss., 98, 922 (2005)
Oedayrajsingh-Varma M, Ham SV, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, Milligen FJV, Cytotherapy., 8, 166 (2006)
Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS, Tissue Eng., 18, 1949 (2012)
Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH, Tissue Eng., 13, 659 (2007)
Park SJ, Kim SH, Hong SK, HWAHAK KONGHAK, 41(4), 497 (2003)
Lee MJ, Seo DY, Lee HE, Choi GJ, Korean J. Chem. Eng., 28(6), 1406 (2011)
Yoo DJ, J. Kor. Soc. Prec. Eng., 28, 834 (2011)
Shin YM, Shin H, Polym. Sci. Technol., 18(5), 458 (2007)
Choi SW, Zhang Y, Xia YN, Langmuir, 26(24), 19001 (2010)
Oh MJ, Moon SK, Kim SE, Choi SW, Biomaterials Research., 17, 126 (2013)
Zhang Y, Choi SW, Xia YN, Macromol. Rapid Commun., 33(4), 296 (2012)
Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E, Development, 134, 3917 (2007)
Murphy CL, Polak JM, J. Cell Physiol., 199, 451 (2004)
Sekiya I, Tsuji, K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M, J. Biol. Chem., 275, 10738 (2000)
Oh CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS, J. Biol. Chem., 275, 5613 (2000)
Kanichai M, Ferguson D, Prendergast PJ, Campbell VA, J. Cell Physiol., 216, 708 (2008)