ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 24, 2013
Accepted October 22, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

반도체 소자용 구리 배선 형성을 위한 전해 도금

Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices

서울대학교 화학생물공학부, 151-744 서울시 관악구 관악로 1
School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
jjkimm@snu.ac.kr
Korean Chemical Engineering Research, February 2014, 52(1), 26-39(14), 10.9713/kcer.2014.52.1.26 Epub 3 February 2014
downloadDownload PDF

Abstract

전자 소자의 구리 금속 배선은 전해 도금을 포함한 다마신 공정을 통해 형성한다. 본 총설에서는 배선 형성을 위한 구리 전해 도금 및 수퍼필링 메카니즘에 대해 다루고자 한다. 수퍼필링 기술은 전해 도금의 전해질에 포함된 유기 첨가제의 영향에 의한 결과이며, 이는 유기 첨가제의 표면 덮임율을 조절하여 웨이퍼 위에 형성된 패턴의 바닥 면에서의 전해 도금 속도를 선택적으로 높임으로써 가능하다. 소자의 집적도를 높이기 위해 금속 배선의 크기는 계속적으로 감소하여 현재 그 폭이 수십 nm 수준으로 줄어들었다. 이러한 배선 폭의 감소는 구리 배선의 전기적 특성 감소, 신뢰성의 저하, 그리고 수퍼필링의 어려움 등 여러 가지 문제를 야기하고 있다. 본 총설에서는 상기 기술한 문제점을 해결하기 위해 구리의 미세 구조 개선을 위한 첨가제의 개발, 펄스 및 펄스-리벌스 전해 도금의 적용, 고 신뢰성 배선 형성을 위한 구리 기반 합금의 수퍼필링, 그리고 수퍼필링 특성 향상에 관한 다양한 연구를 소개한다.
Cu interconnection in electronic devices is fabricated via damascene process including Cu electrodeposition. In this review, Cu electrodeposition and superfilling for fabricating Cu interconnection are introduced. Superfilling results from the influences of organic additives in the electrolyte for Cu electrodeposition, and this is enabled by the local enhancement of Cu electrodeposition at the bottom of filling feature formed on the wafer through manipulating the_x000D_ surface coverage of organic additives. The dimension of metal interconnection has been constantly reduced to increase the integrity of electronic devices, and the width of interconnection reaches the range of few tens of nanometer. This size reduction raises the issues, which are the deterioration of electrical property and the reliability of Cu interconnection, and the difficulty of Cu superfilling. The various researches on the development of organic additives for the modification_x000D_ of Cu microstructure, the application of pulse and pulse-reverse electrodeposition, Cu-based alloy superfilling for improvement of reliability, and the enhancement of superfilling phenomenon to overcome the current problems are addressed in this review.

References

Bohr MT, Proc. IEEE IEDM Tech. Dig., 241 (1995)
Interconnect, ITRS (International Technology Roadmap for Semiconductors, on-line document), 2011 edition, International Technology for Semiconductors (2011)
Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H, IBM J. Res. Dev., 42, 567 (1998)
Vereecken PM, Binstead RA, Deligianni H, Andricacos PC, IBM J. Res. Dev., 49, 3 (2005)
Kwon OJ, Cho SK, Kim JJ, Korean Chem. Eng. Res., 47, 141 (2009)
Kim MJ, “The Influences of Pulse and Pulse-reverse Electrodeposition on the Properties of Cu Thin Films and Superfilling for the Fabrication of Cu Interconnection,” Ph.D. Dissertation, Seoul National University, Seoul (2013)
Namkoung YM, Lee HM, Son YS, Lee K, Kim CK, Korean J. Chem. Eng., 27(5), 1596 (2010)
Lee HM, Chae H, Kim CK, Korean J. Chem. Eng., 29(9), 1259 (2012)
West AC, Mayer S, Reid J, Electrochem. Solid State Lett, 4, 50 (2001)
Kim SK, Kim JJ, Electrochem. Solid State Lett, 7, 98 (2004)
Kim SK. Cho SK, Kim JJ, Lee YS, Electrochem. Solid State Lett., 8, 19 (2005)
Lu J, Dreisinger DB, Cooper WC, Hydrometallurgy, 66, 23 (2002)
Healy JP, Pletcher D, Goodenough M, J. Electronal. Chem., 338, 167 (1992)
Kang M, Gewirth AA, J. Electrochem. Soc., 150, 426 (2003)
Frank A, Bard AJ, J. Electrochem. Soc., 150, 244 (2003)
Huynh TMT, Hai NTM, Broekmann P, J. Electrochem. Soc., 160, 3063 (2013)
Jin Y, Sui Y, Wen L, Ye F, Sun M, Wang Q, J. Electrochem. Soc., 160, 20 (2013)
Bozzini B, D’Urzo L, Romanello V, Mele C, J. Electrochem. Soc., 153, 254 (2006)
Tan M, Guymon C, Wheeler DR, Harb JN, J. Electrochem. Soc., 154, 78 (2007)
Taubert CE, Kolb DM, Memmert U, Meyer H, J. Electrochem. Soc., 154, 293 (2007)
Liske R, Wehner S, Preusse A, Kuecher P, Bartha JW, J. Electrochem. Soc., 156, 955 (2009)
Cho SK, Kim MJ, Koo HC, Kim SK, Kim JJ, Bull. Korean Chem. Soc., 33, 1603 (2012)
Wang W, Li YB, J. Electrochem. Soc., 155, 263 (2008)
Garrido MEH, Pritzker MD, J. Electrochem. Soc., 156, 175 (2009)
Dow WP, Yen MY, Lin WB, Ho SW, J. Electrochem. Soc., 152, 769 (2005)
Cho SK, “Superfilling and Leveling in Damascene Cu Electrodeposition for High Performance Semiconductor Devices,” Ph.D. Dissertation, Seoul National University, Seoul (2013)
Josell D, Wheeler D, Huber WH, Bonevich JE, Moffat TP, J. Electrochem. Soc., 148, 767 (2001)
Moffat TP, Wheeler D, Kim SK, Josell D, J.Electrochem. Soc., 153, 127 (2006)
Josell D, Moffat TP, Wheeler, D, J. Electrochem. Soc., 154, 208 (2007)
Moffat TP, Wheeler D, Josell D, J. Electrochem. Soc., 151, 262 (2004)
Willey MJ, West AC, J. Electrochem. Soc., 154, 156 (2007)
Baker BC, Freeman M, Melnick B, Wheeler D, Josell D, Moffat TP, J. Electrochem. Soc., 150, 61 (2003)
Ahn EJ, Kim JJ, Electrochem. Solid State Lett., 7, 118 (2004)
Josell D, Burkhard C, Li Y, Cheng YW, Keller RR, Witt C A, Kelley DR, Bonevich JE, Baker BC, Moffat TP, J. Appl. Phys., 96, 759 (2004)
Josell D, Beauchamp CR, Kelley DR, Witt CA, Moffat TP, Electrochem.Solid State Lett., 8, 54 (2005)
Hu Z, Ritzdorf T, J. Electrochem.Soc., 153, 467 (2006)
Josell D, Moffat TP, J. Electrochem. Soc., 160, 3009 (2013)
Kim SK, Bonevich JE, Josell D, Moffat TP, J. Electrochem. Soc., 154, 443 (2007)
Lee CH, Bonevich JE, Bertocci U, Steffens KL, Moffat TP, J. Electrochem. Soc., 158, 366 (2011)
Interconnect, ITRS (International Technology Roadmap for Semiconductors, on-line document), 2007 edition, International Technology for Semiconductors (2007)
Ohring M, The Materials Science of Thin Films, 1st ed., Academic Press, Inc., San Diego (1992)
Plombon JJ, Andideh E, Dubin VM, Maiz J, “Influence of Phonon, Geometry, Impurity, and Grain Size on Copper Line Resistivity,” Appl. Phys. Lett., 89, 113124-1-113124-3 (2006)
Henriquez R, Cancino S, Espinosa A, Flores M, Hoffmann T, Kremer G, Lisoni JG, Moraga L, Morales R, Oyarzun S, Suarez MA, Zuniga A, Munoz RC, “Electron Grain Boundary Scattering and the Resistivity of Nanometric Metallic Structures,” Phys. Rev. B, 82, 113409-1-113409-4 (2010)
Josell D, Brongersma SH, Tokei Z, Annu. Rev. Mater. Res., 39, 231 (2009)
Mayadas AF, Shatzkes M, Phys. Rev. B., 1, 1382 (1970)
Rosenberg R, Mayadas AF, Gupta D, Surf. Sci., 31, 566 (1972)
Rossnagel SM, Kuan TS, J. Vac. Sci. Technol. B, 22(1), 240 (2004)
Paunovic M, Schlesinger M, Fundamentals of Electrochemical Deposition, 2nd ed., John Wiley & Sons, Inc., New Jersey (2006)
Cho SK, Kim SK, Kim JJ, J. Electrochem. Soc., 152, 330 (2005)
Cho SK, Kim MJ, Koo HC, Kwon OJ, Kim JJ, Thin Solid Films, 520, 2136 (2012)
Manu R, Jayakrishnan S, Bull. Mater. Sci., 34, 347 (2011)
Kim MJ, Cho SK, Koo HC, Lim T, Park KJ, Kim J J, J. Electrochem. Soc., 157, 564 (2010)
Kim MJ, Lim T, Park KJ, Cho SK, Kim SK, Kim JJ, J. Electrochem. Soc., 159, 538 (2012)
Kim MJ, Lim T, Park KJ, Kwon OJ, Kim SK, Kim JJ, J. Electrochem. Soc., 159, 544 (2012)
Lloyd JR, Clement JJ, Thin Solid Films, 262(1-2), 135 (1995)
Arnaud L, Gonnella R, Tartavel G, Torres J, Gounelle C, Gobil Y, Morand Y, Microelectron. Reliab., 38, 1029 (1998)
Hu CK, Harper JME, Mater. Chem. and Phys., 52, 5 (1998)
Arnaud L, Tartavel G, Berger T, Mariolle D, Gobli Y, Touet I, Microelectron. Reliab, 40, 77 (2000)
Tan CM, Roy A, Mater. Sci. Eng. R., 58, 1 (2007)
Barmak K, Gungor A, Rollett AD, Cabral Jr.C, Harper JME, Mat. Res. Soc. Symp. Proc., 721, 51 (2002)
Lee W, Cho H, Cho B, Kim J, Kim YS, Jung WG, Kwon H, Lee J, Reucroft PJ, Lee C, Lee J, J. Electrochem. Soc., 147(8), 3066 (2000)
Zhao B, Kim H, Shimogaki Y, Jpn. J. Appl. Phys., 41, 1278 (2005)
Zhao B, Momose T, Shimogaki Y, Jpn. J. Appl. Phys., 45, 1296 (2006)
Barmak K, Cabral C, Rodbell KP, Harper JME, J. Vac. Sci. Technol. B, 24(6), 2485 (2006)
Kim MJ, Lee HJ, Yong SH, Kwon OJ, Kim SK, Kim JJ, J. Electrochem.Soc., 159, 253 (2012)
Kim MJ, Yong SH, Ko HS, Lim T, Park KJ, Kwon OJ, Kim JJ, J. Electrochem. Soc., 159, 656 (2012)
Kim MJ, Park KJ, Lim T, Kwon OJ, Kim JJ, J.Electrochem. Soc., 160, 3126 (2013)
Volov I, Swanson E, O’Brien B, Novak SW, Boom RV D, Dunn K, West AC, J. Electrochem. Soc., 159, 677 (2012)
Reid J, Jpn. J. Apply. Phys., 40, 2650 (2001)
Gwllaway JW, Willey MJ, West AC, J. Electrochem. Soc., 156, 287 (2009)
Moffat TP, Wheeler D, Huber WH, Josell D, Electrochem. Solid State Lett., 4, 26 (2001)
Kim MJ, Lim T, Park KJ, Kim SK, Kim JJ, J. Electrochem. Soc., 160, 3081 (2013)
Kim MJ, Lim T, Park KJ, Kim SK, Kim JJ, J. Electrochem. Soc., 160, 3088 (2013)
Andryuschenko T, Reid J, Proc. Int. Interconnect Technol. Conf., 33 (2001)
Sukamto JH, Webb E, Andryushchenko T, Reid J, J. Appl. Electrochem., 34(3), 283 (2004)
Cho SK, Lim T, Lee HK, Kim JJ, J. Electrochem. Soc., 157, 187 (2010)
Choe S, Kim M J, Kim HC, Lim T, Park K J, Cho S K, Kim SK, Kim JJ, J. Electrochem. Soc., 160, 202 (2013)
Shacham-Diamand Y, Dubin VM, Microelectron. Eng., 33, 47 (1997)
Lee CH, Hwang S, Kim SC, Kim JJ, Electrochem. Solid State Lett, 9, 157 (2006)
Josell D, Wheeler D, Witt C, Moffat TP, Electrochem. Solid State Lett, 6, 143 (2003)
Zheng M, Willey M, West AC, Electrochem. Solid State Lett., 8, 151 (2005)
Moffat TP, Walker M, Chen PJ, Bonevich JE, Egelhoff WF, Richter L, Witt C, Aaltonen T, Ritala M, Leskela M, Josell D, J. Electrochem. Soc, 153, 37 (2006)
Josell D, Witt C, Moffat TP, Electrochem. Solid State Lett., 9, 41 (2006)
Josell D, Bonevich JE, Moffat TP, Aaltonen T, Ritala M, Leskela M, Electrochem. Solid State Lett., 9, 48 (2006)
Cheon T, Choi SH, Kim SH, Kang DH, Electrochem. Solid State Lett., 14, 57 (2011)
Hong TE, Cheon T, Kim SH, Kim JK, Park YB, Kwon OJ, Kim MJ, Kim JJ, J. Alloy. Compd., 580, 72 (2013)
Kim MJ, Kim HC, Kim SH, Yeo S, Kwon OJ, Kim JJ, J. Electrochem. Soc., 160, 3057 (2013)
Xu WZ, Xu JB, Lu HS, Wang JX, Hu ZJ, Qu XP, J. Electrochem. Soc., 160, 3075 (2013)
Arunagiri TN, Zhang Y, Chyan O, El-Bouanani M, Kim MJ, Chen KH, Wu CT, Chen LC, “5 nm Ruthenium Thin Film as a Directly Plateable Copper Diffusion Barrier,” Appl. Phys. Lett., 86, 083104-1-083104-3 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로