Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 3, 2013
Accepted October 10, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
산업단지지역 하천 미생물에 의한 퍼클로레이트 제거
Perchlorate Removal by River Microorganisms in Industrial Complexes
1동아대학교 환경공학과, 604-714 부산광역시 사하구 낙동대로 550번길 37 2포항바이오파크, 790-824 경상북도 포항시 남구 대도동 338-1
1Department of Environmental Engineering, Dong-A University, 37 Nakdong-Daero 550 beon-gil, saha-gu, Busan 604-714, Korea 2Pohang Biopark, 338-1 Daedo-dong, Nam-gu, Pohang, Gyeongbuk 790-824, Korea
Korean Chemical Engineering Research, February 2014, 52(1), 92-97(6), 10.9713/kcer.2014.52.1.92 Epub 3 February 2014
Download PDF
Abstract
퍼클로레이트(ClO4- )는 지표수는 물론이고 토양지하수의 신규 오염물이다. ClO4-는 요오드가 갑상선에 흡수되는 것을 방해하므로 갑상선 호르몬 생성을 저하시킨다. ClO4- 는 물에서 매우 용해도가 높고 안정적이라는 특징으로 인해 ClO4- 를 환원하는 세균(PRB)에 의한 생분해가 자연저감의 가장 중요한 요인으로 여겨지고 있다. 산업단지 내 하천은 점 또는 비점오염원으로부터 배출된 ClO4- 에 오염될 잠재성이 있다. 그래서 본 연구에서는 구미지역 산업단지 내 하천에서 물시료를 채취하여 하천미생물의 ClO4- 분해 잠재능을 회분배양으로 조사하였다. 외부 전자공여체를 첨가하지 않고 83시간 동안 배양한 결과 모든 시료는 ClO4- 제거효율이 0.77% 이하로 매우 낮은 것으로 나타났다. 그러나 외부 전자공여체(acetate, thiosulfate, S0, 또는 F0)를 첨가한 경우는 제거효율이 최고 100%로 나타났고, 첨가된 전자공여체의 종류와 시료채취지점에 따라 제거효율은 다양한 것으로 나타났다. 본 연구에서 사용한 전자공여체 중에서는 acetate를 사용했을 때 ClO4-분해효율이 가장 우수한 것으로 나타나 종속영양방식 PRB의 활성이 우세함을 알 수 있었다. 본 연구의 결과는 산업단지 내 하천 미생물에 의한 ClO4- 자연저감에 대한 기초정보를 제공하여 원위치 생물복원처리에서 ClO4- 생분해를 증진하기 위한 전략마련에 유용하게 사용될 것이다.
Perchlorate (ClO4- ) is an emerging contaminant of soil/groundwater and surface water. ClO4- has been shown to inhibit iodide uptake into the thyroid gland and cause a reduction in thyroid hormone production. ClO4- is highly soluble and very stable in water. Biodegradation by ClO4- -reducing bacteria (PRB) is considered the most important factor in natural attenuation of ClO4- . Rivers in an industrial complex have potential to be contaminated with ClO4- discharged from point or non-point sources. In this study, water samples were taken from the rivers running through the Gumi industrial complexes and used for batch test to analyze ClO4- -degradation potential of river microorganisms. The results of 83-h batch culture showed that ClO4- - removal efficiency of all samples was 0.77% or less without addition of an external electron (e.) donor. However ClO4- -removal efficiency was higher when an e- donor (acetate, thiosulfate, S0, or F0) was added into the batch culture, showing up to 100% removal efficiency. The removal efficiency was various depending on type of e. donor and site of sampling. When acetate was used as an e- donor, the highest ClO4- - removal efficiency was observed among the e. donors used in this study, suggesting that activity of heterotrophic PRB was dominant. The results of this study provide basic information on natural attenuation of ClO4- by river microorganisms. The information can be useful to prepare a strategy to enhance efficiency of ClO4- biodegradation for in situ bioremediation.
References
Motzer WE, Environ. Forensics, 2, 301 (2001)
National Research Council, “Health Implications of Perchlorate Ingestion. National Academy of Sciences,” Washington, D.C., USA (2005)
Shin KH, Son A, Cha DK, Kim KW, J. Kor. Soc.Environ. Eng., 29, 1060 (2007)
Republic of Korea Ministry of Environment, “Guideline for the management of Drinking Water Quality Monitoring Items,” Korea (2010)
Coates JD, Achenbach LA, Nat. Rev. Microbiol., 2, 569 (2004)
Kim H, Kim J, Lee Y, J. Kor. Soc. Water Quality, 23, 822 (2007)
Kim HB, Oh JE, Lee SY, Cho JW, J. KSEE, 27(8), 776 (2008)
Her N, Jeong H, Kim J, Yoon Y, Arch. Environ. Contam. Toxicol, 61, 166 (2011)
Lee JW, Oh SH, Oh JE, J. Hazard. Mater., 243, 52 (2012)
Son HJ, Jung CW, J. KSEE, 29(4), 438 (2007)
Kim HK, Kim JH, Lee FH, Lee JH, Kim S, J. Korean Soc. Water Qual., 24(2), 164 (2008)
Han KR, Ahn Y, J. Life Sci., 23(5), 676 (2013)
Lee B, Lee SD, Choo KH, Korean J. Chem. Eng., 30(4), 898 (2013)
Cost & Performance report ESTCP Project (ER-0219), “Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate-Impacted Groundwater at Longhorn Army Ammunitions Plant,” Environmental Security Technology Certification Program, U.S. Department of Defense (2010)
Bardiya N, Bae JH, Microbiol Res., 166(4), 237 (2011)
Ahn Y, Ha MG, J. Life Sci., 21, 444 (2011)
Republic of Korea Ministry of Environment, “Standard method for water,” Korea (2008)
U.S. EPA., “EPA Method 314.0: Determination of Perchlorate in Drinking Water Using Ion Chromatography,” U.S. (1999)
Ahn Y, Jung H, Tatavarty R, Choi H, Yang JW, Kim I S, Biodegradation, 16, 45 (2005)
Okeke BC, Giblin T, Frankenberger Jr.WT, Environ. Poll, 118, 357 (2002)
Logan BE, Wu J, Unz RF, Wat. Res., 35, 3034 (2001)
Greenwood NN, Earnshaw A, Chemistry of the Elements, 2nd Ed., Butterworth-Heinemann, Oxford, U.K. (1997)
Coates JD, Michaelidou U, Bruce RA, O'Connor SM, Crespi JN, Achenbach LA, Appl. Environ. Microbiol, 65, 5234 (1999)
Shrout JD, Scheetz TE, Casavant TL, Parkin GF, Appl. Microbiol. Biotechnol., 67(2), 261 (2005)
National Research Council, “Health Implications of Perchlorate Ingestion. National Academy of Sciences,” Washington, D.C., USA (2005)
Shin KH, Son A, Cha DK, Kim KW, J. Kor. Soc.Environ. Eng., 29, 1060 (2007)
Republic of Korea Ministry of Environment, “Guideline for the management of Drinking Water Quality Monitoring Items,” Korea (2010)
Coates JD, Achenbach LA, Nat. Rev. Microbiol., 2, 569 (2004)
Kim H, Kim J, Lee Y, J. Kor. Soc. Water Quality, 23, 822 (2007)
Kim HB, Oh JE, Lee SY, Cho JW, J. KSEE, 27(8), 776 (2008)
Her N, Jeong H, Kim J, Yoon Y, Arch. Environ. Contam. Toxicol, 61, 166 (2011)
Lee JW, Oh SH, Oh JE, J. Hazard. Mater., 243, 52 (2012)
Son HJ, Jung CW, J. KSEE, 29(4), 438 (2007)
Kim HK, Kim JH, Lee FH, Lee JH, Kim S, J. Korean Soc. Water Qual., 24(2), 164 (2008)
Han KR, Ahn Y, J. Life Sci., 23(5), 676 (2013)
Lee B, Lee SD, Choo KH, Korean J. Chem. Eng., 30(4), 898 (2013)
Cost & Performance report ESTCP Project (ER-0219), “Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate-Impacted Groundwater at Longhorn Army Ammunitions Plant,” Environmental Security Technology Certification Program, U.S. Department of Defense (2010)
Bardiya N, Bae JH, Microbiol Res., 166(4), 237 (2011)
Ahn Y, Ha MG, J. Life Sci., 21, 444 (2011)
Republic of Korea Ministry of Environment, “Standard method for water,” Korea (2008)
U.S. EPA., “EPA Method 314.0: Determination of Perchlorate in Drinking Water Using Ion Chromatography,” U.S. (1999)
Ahn Y, Jung H, Tatavarty R, Choi H, Yang JW, Kim I S, Biodegradation, 16, 45 (2005)
Okeke BC, Giblin T, Frankenberger Jr.WT, Environ. Poll, 118, 357 (2002)
Logan BE, Wu J, Unz RF, Wat. Res., 35, 3034 (2001)
Greenwood NN, Earnshaw A, Chemistry of the Elements, 2nd Ed., Butterworth-Heinemann, Oxford, U.K. (1997)
Coates JD, Michaelidou U, Bruce RA, O'Connor SM, Crespi JN, Achenbach LA, Appl. Environ. Microbiol, 65, 5234 (1999)
Shrout JD, Scheetz TE, Casavant TL, Parkin GF, Appl. Microbiol. Biotechnol., 67(2), 261 (2005)