Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 31, 2013
Accepted December 29, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응
Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode
동국대학교 화공생물공학과, 100-715 서울시 중구 필동로 1길 30
Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 100-715, Korea
pjhoon@dongguk.edu
Korean Chemical Engineering Research, April 2014, 52(2), 247-255(9), 10.9713/kcer.2014.52.2.247 Epub 1 April 2014
Download PDF
Abstract
전극 촉매 물질인 페롭스카이트 형 La0.8Sr0.2CuO3 분말을 시트릭산 합성법으로 제조하였다. 이렇게 제조한 La0.8Sr0.2CuO3 분말과 지지전도체로 탄소 및 소수성 결합제로 polytetrafluoroethylene(PTFE)를 혼합하여 다공성 전극을 제조하였다. 이산화탄소를 0.1, 0.5, 1.0M KOH 전해액에 용해하여 5, 10 ℃의 반응온도에서 -1.5~-2.5 V(vs. Ag/AgCl)의 인가전위로 전기화학 실험을 수행한 결과, 액상생성물은 온도와 상관없이 메탄올, 에탄올, 2-프로판올, 1,2-부탄올이 얻어진 반면 기상생성물로는 5 ℃에서는 메탄, 에탄, 에틸렌이 10 ℃에서는 메탄, 에탄, 프로판이 생성되었다. 전체 패러데이 효율의 관점에서 CO2 환원의 최적 인가전압은 기상의 경우 높은 값을(-2.0, -2.2 V) 보였고, 액상의 경우는 전해액 농도와 반응온도에 상관없이 낮은 전압(-1.5 V)임을 알 수 있었다.
La0.8Sr0.2CuO3 powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and 10 ℃ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at 5 ℃, and methane, ethane and propane at 10 ℃ respectively. Optimal potentials for CO2 reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (.1.5 V) for liquid products regardless of concentration and temperature.
References
Park JH, Park TS, Baek IH, Park S, Polyurethane, 3(1), 28 (2010)
Park JH, Baek IH, Korean Ind. Chem. News, 12(1), 3 (2009)
Park JH, Kim JP, Korean Ind. Chem. News, 14(3), 14 (2011)
Yi CK, Korean Ind. Chem. News, 12(1), 30 (2009)
Seo B, Kim JH, Ahn H, Chang BJ, Lee KH, Korean Ind. Chem. News, 14(3), 1 (2011)
Vaska L, Schreiner S, Felty RA, Yu JY, J. Mol. Catal., 52(2), 11 (1989)
Kojima F, Aida T, Inoue S, J.Am. chem. Soc., 108(3), 391 (1986)
Halmann M, “Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products,” CRC Press, Boca Raton (1993)
Parkinson BA, Weaver PF, Nature, 309, 148 (1984)
Sullivan BP, Krist K, Guard HE, “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide,” Elsevier, Amsterdam (1993)
Wasmus S, Cattaneo E, Vielstich W, Electrochim. Acta, 35(4), 771 (1990)
Frese KW Jr J, Electrochem. Soc., 138(11), 3338 (1991)
Taguchi S, Aramata A, Electrochim. Acta, 39(17), 2533 (1994)
Kyriacou G, Anagnostopoulos A, “Electroreduction of CO2 on Differently Prepared Copper Electrodes: The Influence of Electrode Treatment on the Current Efficiences,” J. Electroanal. Chem., 322(1-2), 233-246 (1992)
Hara K, Tsuneto A, Kudo A, Sakata T, J. Electrochem. Soc., 141(8), 2097 (1994)
Hori Y, Murata A, Takahashi R, J. Chem. Soc. Faraday Trans. I, 85, 2309 (1989)
Cook RL, MacDuff RC, Sammells AF, J. Electrochem. Soc., 135(6), 1320 (1988)
Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K, Bull. Chem. Soc. Jpn., 63, 2459 (1990)
Bandi A, J. Electrochem. Soc., 137(7), 2157 (1990)
Katoh A, Uchida H, Shibata M, Watanabe M, J. Electrochem. Soc., 141(8), 2054 (1994)
Mori M, Naruoka Y, Naoi K, Fauteux D, J. Electrochem. Soc., 145(7), 2340 (1998)
Park JH, Lee SI, Wee JH, Lim JH, Lee JK, Chun HS, Korean Chem. Eng. Res., 36, 751 (1998)
Kudo T, Obayashi H, Yoshida M, J. Electrochem. Soc., 124(3), 321 (1977)
Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N, J. Electrochem. Soc., 137(11), 3430 (1990)
Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195(1), 81 (1985)
Bard AJ, Faulkner LR, “Electrochemical Methods: Fundamentals and Applications,” p16-38, Wiley & Sons, New York (1980)
Tejuca LG, Fierro JLG, “Properties and Applications of Perovskite-Type Oxides,” Marcel Dekker, New York (1993)
Ponec V, Catal. Rev., 11, 41 (1975)
Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195, 81 (1985)
Choi C, Jung Y, Kim NJ, Pak D, Chung KY, Kim LH, Kwon Y, Korean Chem. Eng. Res., 50(5), 933 (2012)
Park JH, Baek IH, Korean Ind. Chem. News, 12(1), 3 (2009)
Park JH, Kim JP, Korean Ind. Chem. News, 14(3), 14 (2011)
Yi CK, Korean Ind. Chem. News, 12(1), 30 (2009)
Seo B, Kim JH, Ahn H, Chang BJ, Lee KH, Korean Ind. Chem. News, 14(3), 1 (2011)
Vaska L, Schreiner S, Felty RA, Yu JY, J. Mol. Catal., 52(2), 11 (1989)
Kojima F, Aida T, Inoue S, J.Am. chem. Soc., 108(3), 391 (1986)
Halmann M, “Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products,” CRC Press, Boca Raton (1993)
Parkinson BA, Weaver PF, Nature, 309, 148 (1984)
Sullivan BP, Krist K, Guard HE, “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide,” Elsevier, Amsterdam (1993)
Wasmus S, Cattaneo E, Vielstich W, Electrochim. Acta, 35(4), 771 (1990)
Frese KW Jr J, Electrochem. Soc., 138(11), 3338 (1991)
Taguchi S, Aramata A, Electrochim. Acta, 39(17), 2533 (1994)
Kyriacou G, Anagnostopoulos A, “Electroreduction of CO2 on Differently Prepared Copper Electrodes: The Influence of Electrode Treatment on the Current Efficiences,” J. Electroanal. Chem., 322(1-2), 233-246 (1992)
Hara K, Tsuneto A, Kudo A, Sakata T, J. Electrochem. Soc., 141(8), 2097 (1994)
Hori Y, Murata A, Takahashi R, J. Chem. Soc. Faraday Trans. I, 85, 2309 (1989)
Cook RL, MacDuff RC, Sammells AF, J. Electrochem. Soc., 135(6), 1320 (1988)
Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K, Bull. Chem. Soc. Jpn., 63, 2459 (1990)
Bandi A, J. Electrochem. Soc., 137(7), 2157 (1990)
Katoh A, Uchida H, Shibata M, Watanabe M, J. Electrochem. Soc., 141(8), 2054 (1994)
Mori M, Naruoka Y, Naoi K, Fauteux D, J. Electrochem. Soc., 145(7), 2340 (1998)
Park JH, Lee SI, Wee JH, Lim JH, Lee JK, Chun HS, Korean Chem. Eng. Res., 36, 751 (1998)
Kudo T, Obayashi H, Yoshida M, J. Electrochem. Soc., 124(3), 321 (1977)
Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N, J. Electrochem. Soc., 137(11), 3430 (1990)
Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195(1), 81 (1985)
Bard AJ, Faulkner LR, “Electrochemical Methods: Fundamentals and Applications,” p16-38, Wiley & Sons, New York (1980)
Tejuca LG, Fierro JLG, “Properties and Applications of Perovskite-Type Oxides,” Marcel Dekker, New York (1993)
Ponec V, Catal. Rev., 11, 41 (1975)
Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195, 81 (1985)
Choi C, Jung Y, Kim NJ, Pak D, Chung KY, Kim LH, Kwon Y, Korean Chem. Eng. Res., 50(5), 933 (2012)