Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 24, 2014
Accepted March 19, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향
Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation
맥길대학교 바이오시스템공학과, 몬트리올, 캐나다, H9X 3V9
Department of Biosystems Engineering, McGill University, Ste Anne de Bellevue, Canada, H9X 3V9
kimjw1028@hotmail.com
Korean Chemical Engineering Research, June 2014, 52(3), 302-306(5), 10.9713/kcer.2014.52.3.302 Epub 2 June 2014
Download PDF
Abstract
목질계 분해효소 활성 증대를 위해 밀짚을 이용한 고체발효에서 주요 발효인자의 최적화를 수행하였다. Trichoderma reesei와 Aspergillus niger를 이용한 혼합배양에서 고체발효에 주요한 영향을 미친다고 알려진 배양온도, pH, 수분함량과 고체기질 크기를 순차적 최적화를 진행하였다. 실험에 적용 된 인자 모두 목질계 분해효소 활성에 유의한 효과를 주었으며, 발효온도 40 oC, pH 7, 수분함량 75%와 고체기질 크기 0.25~0.5 mm가 목질계 분해효소 생산을 위한 최적조건임을 알 수 있었다. 최적조건 하에서 밀짚을 이용한 고체발효를 수행하였을 때, 효소활성 기준 cellulase 10.3 IU, endoglucanase 100.3 IU, β-glucosidase 22.9 IU와 xylanase 2261.7 IU/g dry material을 배양 96시간에 확인할 수 있었다. 본 결과는 기존 효소활성 대비 각각 72.6, 48.7, 55.2와 51.9% 증가한 수치로 혼합배양과 순차적 최적화를 적용하여 효과적인 목질계 분해효소 활성 증대가 가능함을 확인하였다.
The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that 40 oC, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation._x000D_
Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, β-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.
References
Limayema A, Rickea SC, Prog. Energ. Combust, 38, 449 (2012)
Sarkar N, Ghosh SK, Bannerjee S, Aikat K, Renew. Energ., 37, 19 (2012)
Dhillon GS, Brar SK, Kaur S, Verma M, Ind. Crop Prod., 41, 78 (2013)
Kim SB, Lee JH, Oh KK, Lee SJ, Lee JY, Kim JS, Kim SW, Biotechnol. Bioproc. Eng., 16, 725 (2011)
Go AR, Ko JW, Lee SJ, Kim SW, Han SO, Lee JW, Woo HM, Um YS, Nam JW, Park CH, Biotechnol. Bioproc. Eng., 17, 1055 (2012)
Kim TH, Kim JS, Sunwoo C, Lee YY, Bioresour. Technol., 90(1), 39 (2003)
Kim KS, Kim JS, Korean Chem. Eng. Res., 48(6), 704 (2010)
Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A, Enzyme Microb. Technol., 46(7), 541 (2010)
Dhillon GS, Bra SK, Surinder K, Ind. Crop Prod., 38, 6 (2012)
Barrington S, Kim JW, Bioresour. Technol., 99(2), 368 (2008)
Barrington S, Kim JW, Bioresour. Technol., 99(2), 368 (2008)
Pensupa N, Jin M, Kokolski M, Archer DB, Du CA, Bioresour. Technol., 149, 261 (2013)
Kim JW, Barrington S, Sheppard J, Lee B, Process Biochem., 41, 1253 (2006)
Rezaei PS, Darzi GN, Shafaghat H, Korean J. Chem. Eng., 27(3), 919 (2010)
Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K, Biotechnol. Bioeng., 108(12), 2823 (2011)
Takashima S, Iilura H, Nakamur A, Hidak M, Masaki H, Uozumi T, J. Biotechnol., 65, 163 (1998)
Wang JL, Liu P, Process Biochem., 33(3), 313 (1998)
Lotfy WA, Ghanem KM, El-Helow ER, Bioresour. Technol., 98(18), 3464 (2007)
Bansal N, Tewari R, Soni R, Soni SK, Waste Manag., 32, 1341 (2012)
Kim JW, Korean Chem. Eng. Res., 50(5), 879 (2012)
Roukas T, Enzyme Microb. Technol., 24(1-2), 54 (1999)
Nampoothiri MK, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A, Process Biochem., 39, 1583 (2004)
Wen ZY, Chen F, Biotechnol. Bioeng., 75(2), 159 (2001)
Ellaiah P, Srinivasulu B, Adinarayana K, Process Biochem., 39, 529 (2004)
Sarkar N, Ghosh SK, Bannerjee S, Aikat K, Renew. Energ., 37, 19 (2012)
Dhillon GS, Brar SK, Kaur S, Verma M, Ind. Crop Prod., 41, 78 (2013)
Kim SB, Lee JH, Oh KK, Lee SJ, Lee JY, Kim JS, Kim SW, Biotechnol. Bioproc. Eng., 16, 725 (2011)
Go AR, Ko JW, Lee SJ, Kim SW, Han SO, Lee JW, Woo HM, Um YS, Nam JW, Park CH, Biotechnol. Bioproc. Eng., 17, 1055 (2012)
Kim TH, Kim JS, Sunwoo C, Lee YY, Bioresour. Technol., 90(1), 39 (2003)
Kim KS, Kim JS, Korean Chem. Eng. Res., 48(6), 704 (2010)
Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A, Enzyme Microb. Technol., 46(7), 541 (2010)
Dhillon GS, Bra SK, Surinder K, Ind. Crop Prod., 38, 6 (2012)
Barrington S, Kim JW, Bioresour. Technol., 99(2), 368 (2008)
Barrington S, Kim JW, Bioresour. Technol., 99(2), 368 (2008)
Pensupa N, Jin M, Kokolski M, Archer DB, Du CA, Bioresour. Technol., 149, 261 (2013)
Kim JW, Barrington S, Sheppard J, Lee B, Process Biochem., 41, 1253 (2006)
Rezaei PS, Darzi GN, Shafaghat H, Korean J. Chem. Eng., 27(3), 919 (2010)
Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K, Biotechnol. Bioeng., 108(12), 2823 (2011)
Takashima S, Iilura H, Nakamur A, Hidak M, Masaki H, Uozumi T, J. Biotechnol., 65, 163 (1998)
Wang JL, Liu P, Process Biochem., 33(3), 313 (1998)
Lotfy WA, Ghanem KM, El-Helow ER, Bioresour. Technol., 98(18), 3464 (2007)
Bansal N, Tewari R, Soni R, Soni SK, Waste Manag., 32, 1341 (2012)
Kim JW, Korean Chem. Eng. Res., 50(5), 879 (2012)
Roukas T, Enzyme Microb. Technol., 24(1-2), 54 (1999)
Nampoothiri MK, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A, Process Biochem., 39, 1583 (2004)
Wen ZY, Chen F, Biotechnol. Bioeng., 75(2), 159 (2001)
Ellaiah P, Srinivasulu B, Adinarayana K, Process Biochem., 39, 529 (2004)