Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 5, 2013
Accepted March 3, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
정삼투 공정에 있어 비대칭 셀룰로오즈 막의 투과유속 감소특성
Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane
한국원자력연구원, 대전 유성구 대덕대로 989번길 111 1경일대학교 화학공학과, 경북 경산시 하양읍 가마실길 50
Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353, Korea 1Department of Chemical Engineering, Kyungil University, 50 Gamasil-gil, Hayang-eup, Gyeongsan, Gyeongbuk 712-701, Korea
stnam@kiu.ac.kr
Korean Chemical Engineering Research, June 2014, 52(3), 328-334(7), 10.9713/kcer.2014.52.3.328 Epub 2 June 2014
Download PDF
Abstract
정삼투막 공정을 이용한 소금 및 수크로오스 용액의 처리에서 농도분극현상이 투과유속에 미치는 영향을 검토하였다. 정삼투 공정에서 투과 유속감소는 주로 분리막 표면에서의 농도분극에 기인하며, 분리막의 지지층에서 발생한 내부농도분극에 의한 투과유속 감속이 활성층에서 발생한 외부농도분극에 의한 것 보다 더 컸다. 순수 투과유속은 삼투압이 증가함에 따라 비선형적으로 증가하였다. NaCl 용액의 활성층 배향(DS-AL)에서의 수 투과계수는 1.8081×10-7 m/s·atm, 지지층 배향(DS-SL)의 경우 1.0957×10-7 m/s·atm 이었으며, 이로부터 산출된 막저항은 각각 5.5306×106 s·atm/m, 9.1266×106 s·atm/m 이었다. 수크로오스 용액의 경우 활성층 배향(DS-AL)에서의 투과유속이 지지층 배향(DS-SAL)에서의_x000D_
투과유속보다 1.33~1.90배 크게 나타났다. 삼투압(π)에 대한 투과유속(J)의 변화는 전자의 경우 J=-0.0177+0.4506π-0.0032π2, 후자의 경우 J=0.0948+0.3292π-0.0037π2으로 표현될 수 있었다.
This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was 1.8081×10-7 m/s·atm for draw solution on active layer (DS-AL) mode and 1.0957×10-7 m/s·atm for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was 5.5306×106 and 9.1266×106 s·atm/m, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33~1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (π) would be expressed as J=-0.0177+0.4506π-0.0032π2 for the forward and J=0.0948+0.3292π-0.0037π2 for the latter.
References
Clever M, Jordt F, Knauf R, Rabiger N, Rudebusch M, Hilker-Scheibel R, Desalination, 131(1-3), 325 (2000)
Kraume M, Blacklow U, Vocks M, Drews A, Wat. Sci. Tech., 51, 391 (2005)
Raluy G, Serra L, Uche J, Energy, 31, 2361 (2006)
Madaeni SS, Rahimi M, Abolhasani M, Korean J. Chem. Eng., 27(1), 206 (2010)
Cath TY, Childress AE, Elimelech M, J. Membr. Sci., 281(1-2), 70 (2006)
Lee S, Boo C, Elimelech M, Hong S, J. Membr. Sci., 365(1-2), 34 (2010)
Phillip WA, Yong JS, Elimelech M, Environ. Sci. Technol., 44, 5170 (2010)
Wang R, Shi L, Tang CYY, Chou SR, Qiu C, Fane AG, J. Membr. Sci., 355(1-2), 158 (2010)
Kim Y, Lee JH, Lee KH, Kim YC, Oh DW, Lee J, Korean Chem. Eng. Res., 51(2), 240 (2013)
McCutcheon JR, McGinnis RL, Elimelech M, J. Membr. Sci., 278(1-2), 114 (2006)
McCutcheon JR, McGinnis RL, Elimelech M, Desalination, 174(1), 1 (2005)
Gray GT, McCutcheon JR, Elimelech M, Desalination, 197(1-3), 1 (2006)
McCutcheon JR, Elimelech M, AIChE J., 53(7), 1736 (2007)
McCutcheon JR, Elimelech M, J. Membr. Sci., 284(1-2), 237 (2006)
Sablani SS, Goosen MFA, Al-Belushi R, Wilf M, Desalination, 141(3), 269 (2001)
Jin X, She Q, Ang X, Tang CY, J. Membr. Sci., 289, 182 (2012)
Victor MML, Pure Appl. Chem., 65, 2631 (1993)
Siedel A, Waypa JJ, Elimelec M, Environ. Eng. Sci., 18, 5 (2001)
Kraume M, Blacklow U, Vocks M, Drews A, Wat. Sci. Tech., 51, 391 (2005)
Raluy G, Serra L, Uche J, Energy, 31, 2361 (2006)
Madaeni SS, Rahimi M, Abolhasani M, Korean J. Chem. Eng., 27(1), 206 (2010)
Cath TY, Childress AE, Elimelech M, J. Membr. Sci., 281(1-2), 70 (2006)
Lee S, Boo C, Elimelech M, Hong S, J. Membr. Sci., 365(1-2), 34 (2010)
Phillip WA, Yong JS, Elimelech M, Environ. Sci. Technol., 44, 5170 (2010)
Wang R, Shi L, Tang CYY, Chou SR, Qiu C, Fane AG, J. Membr. Sci., 355(1-2), 158 (2010)
Kim Y, Lee JH, Lee KH, Kim YC, Oh DW, Lee J, Korean Chem. Eng. Res., 51(2), 240 (2013)
McCutcheon JR, McGinnis RL, Elimelech M, J. Membr. Sci., 278(1-2), 114 (2006)
McCutcheon JR, McGinnis RL, Elimelech M, Desalination, 174(1), 1 (2005)
Gray GT, McCutcheon JR, Elimelech M, Desalination, 197(1-3), 1 (2006)
McCutcheon JR, Elimelech M, AIChE J., 53(7), 1736 (2007)
McCutcheon JR, Elimelech M, J. Membr. Sci., 284(1-2), 237 (2006)
Sablani SS, Goosen MFA, Al-Belushi R, Wilf M, Desalination, 141(3), 269 (2001)
Jin X, She Q, Ang X, Tang CY, J. Membr. Sci., 289, 182 (2012)
Victor MML, Pure Appl. Chem., 65, 2631 (1993)
Siedel A, Waypa JJ, Elimelec M, Environ. Eng. Sci., 18, 5 (2001)