Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 31, 2013
Accepted February 20, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고점성 낮은표면장력 매체 기포탑에서 열전달
Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media
충남대학교 화학공학과, 305-764 대전시 유성구 대학로 99
Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yeseong-gu, Daejeon 305-764, Korea
Korean Chemical Engineering Research, August 2014, 52(4), 516-521(6), 10.9713/kcer.2014.52.4.516 Epub 30 July 2014
Download PDF
Abstract
고점성이며 낮은 표면장력 매체로 구성된 기포탑에서 축방향 국부 열전달 계수와 총괄 열전달 계수에 대해 고찰하였다. 기체공탑유속(0.02~0.10 m/s), 액체 점도(0.1~0.3 Pa·s) 그리고 액체 표면장력(66.1~72.9×10-3 N/m)이 국부 및 총괄 열전달 계수에 미치는 영향을 검토하였다. 열전달 영역은 기포탑 내부 열원과 기포탑 간의 열전달계로 구성하였다. 즉, 기포탑의 중앙에 수직 열원을 설치하여 내부 열원으로 하였다. 열전달 계수는 주어진 운전조건에서 열원에 제공되는 열량과 내부 열원과 기포탑 간의 온도차를 연속적으로 측정하여 결정하였다. 국부 열전달 계수는 기체공탑유속이 증가함에 따라 증가하였으나 기체 분산판으로 부터의 축방향 거리가 증가함에 따라, 액체의 표면장력이 증가함에 따라 감소하였다. 총괄 열전달 계수는 기체공탑유속이 증가함에 따라 증가하였으나 액상의 점도와 표면장력이 증가함에 따라서는 감소하였다. 총괄 열전달 계수는 기체공탑유속, 액상의 점도와 표면장력의 함수로 상관계수 0.91의 상관식을 얻을 수 있었으며 넛셀 수, 레이놀즈 수, 플란틀 수 그리고 웨버 수의 함수로 상관계수 0.92의 상관식으로 나타낼 수 있었다. _x000D_
h = 2502UG0.236μL-0.250σL-0.028_x000D_
Nu = 325Re0.180Pr-0.067We0.028
Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity (0.1~0.3 Pa·s) and surface tension (66.1~72.9×10-3 N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer_x000D_
coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92;_x000D_
h = 2502UG0.236μL-0.250σL-0.028_x000D_
Nu = 325Re0.180Pr-0.067We0.028
References
Fan LS, Gas-liquid-solid fluidization engineering, Butterworth, Boston (1989)
Deckwer WD, Bubble column reactor, John Wiley and Sons, NY (1992)
Shin IS, Son SM, Lim DH, Kang Y, Jung H, Lee HT, Korean J. Chem. Eng., 27(3), 1015 (2010)
Muroyama K, Imai K, Oka Y, Hayashi J, Chem. Eng. Sci., 100, 464 (2013)
Kang HW, Park SB, Chem. Sci. Eng., 100, 384 (2013)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Kim SD, Kang Y, Stud. Surf. Sci. Catal., 159, 103 (2006)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Sathe M, Joshi J, Evans G, Chem. Eng. Sci., 100, 52 (2013)
Son SM, Lee KI, Kang SH, Kang Y, Kim SD, AIChE J., 53(11), 3011 (2007)
Lim DH, Jang JH, Jin HR, Kang Y, Jung H, Kim SD, Kim WH, Chem. Eng. Sci., 66(14), 3145 (2011)
Jin HR, Lim H, Lim DH, Kang Y, Jun KW, Chin. J. Chem. Eng., 21(8), 844 (2013)
Lim DH, Jang JH, Kang Y, Jun KW, Korean J. Chem. Eng., 28(3), 974 (2011)
Lim DH, Park JH, Kang Y, Jun KW, Fuel Process. Technol., 108, 2 (2013)
Jin HR, Lim DH, Lim H, Kang Y, Jung H, Kim SD, Ind. Eng. Chem. Res., 51(4), 2062 (2012)
Deckwer WD, Bubble column reactor, John Wiley and Sons, NY (1992)
Shin IS, Son SM, Lim DH, Kang Y, Jung H, Lee HT, Korean J. Chem. Eng., 27(3), 1015 (2010)
Muroyama K, Imai K, Oka Y, Hayashi J, Chem. Eng. Sci., 100, 464 (2013)
Kang HW, Park SB, Chem. Sci. Eng., 100, 384 (2013)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Kim SD, Kang Y, Stud. Surf. Sci. Catal., 159, 103 (2006)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Sathe M, Joshi J, Evans G, Chem. Eng. Sci., 100, 52 (2013)
Son SM, Lee KI, Kang SH, Kang Y, Kim SD, AIChE J., 53(11), 3011 (2007)
Lim DH, Jang JH, Jin HR, Kang Y, Jung H, Kim SD, Kim WH, Chem. Eng. Sci., 66(14), 3145 (2011)
Jin HR, Lim H, Lim DH, Kang Y, Jun KW, Chin. J. Chem. Eng., 21(8), 844 (2013)
Lim DH, Jang JH, Kang Y, Jun KW, Korean J. Chem. Eng., 28(3), 974 (2011)
Lim DH, Park JH, Kang Y, Jun KW, Fuel Process. Technol., 108, 2 (2013)
Jin HR, Lim DH, Lim H, Kang Y, Jung H, Kim SD, Ind. Eng. Chem. Res., 51(4), 2062 (2012)