Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 6, 2014
Accepted March 31, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
이산화지르코늄과 상호작용하는 금 표면 위의 글루타싸이온층 표면 물성
Surface Properties of Glutathione Layer Formed on Gold Surfaces Interacting with ZrO2
서울과학기술대학교 에너지바이오대학 화공생명공학과, 139-743 서울특별시 노원구 공릉로 232
Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, Korea
jwpark@seoultech.ac.kr
Korean Chemical Engineering Research, August 2014, 52(4), 538-543(6), 10.9713/kcer.2014.52.4.538 Epub 30 July 2014
Download PDF
Abstract
이산화지르코늄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층 표면과 이산화지르코늄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 전하밀도와 포텐셜들이 정량적으로 산출되었다. 이 특성들이 염농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8 조건에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. Glutathione 층의 표면이 이산화지르코늄 표면보다 높은 전하밀도와 포텐셜을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.
It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the ZrO2 surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were quantitatively analyzed with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate the surface potential and charge density of the surfaces for each condition of salt concentration and pH value. The estimated-value dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the zirconium dioxide surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the Glutathione layer.
Keywords
References
Soolaman DM, Yu HZ, J. Phys. Chem. C, 111, 14157 (2007)
Hugon A, Delannoy L, Louis C, Gold Bull., 41, 127 (2008)
Zhang X, Shi H, Xu BQ, J. Catal., 279(1), 75 (2011)
Wang CM, Fan KN, Liu ZP, J. Am. Chem. Soc., 129(9), 2642 (2007)
Kwak JH, Han GY, Bae JW, Yoon KJ, Korean J. Chem. Eng., 31(6), 961 (2014)
Kim MY, Seo G, Park JH, Shin CH, Kim ES, Korean Chem. Eng. Res., 49(1), 1 (2011)
Arrii S, Morfin F, Renouprez AJ, Rousset JL, J. Am. Chem. Soc., 126(4), 1199 (2004)
Zhang X, Wang H, Xu BQ, J. Phys. Chem. B, 109(19), 9678 (2005)
Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998)
Sakurai H, Tsubota S, Haruta M, Appl. Catal. A-General, 102, 125 (1993)
Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28, 1015 (2007)
Schmid G, Chem. Rev., 92, 1709 (1992)
Noh J, Park H, Jeong Y, Kwon S, Bull. Korean Chem. Soc., 27, 403 (2006)
Dasog M, Scott RWJ, Langmuir, 12, 3381 (2007)
Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 33 (2001)
Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089 (2001)
Binnig G, Quate C, Gerber G, Phys. Rev. Lett., 56, 930 (1986)
Derjaguin BV, Landau L, Acta Physiochem. URSS, 14(11), 633 (1941)
Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64(2), 403 (1993)
Derjaguin B, Trans. Faraday Soc., 35(3), 203 (1940)
Israelachvili JN, Adams GE, J. Chem. Soc. Faraday Trans., 74, 975 (1978)
Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108 (1993)
Parker JL, Christenson HK, J. Chem. Phys., 88(12), 8013 (1988)
O'Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336 (1994)
Derjaguin BV, Kolloid Z., 69, 155 (1934)
Hartmann U, Phys. Rev. B, 43, 2404 (1991)
Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183-192 (1991)
Shin H, Agarwal M, de Guire MR, Heuer AH, Acta Mater., 46, 801 (1998)
Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63 (1948)
Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., 62(522), 1638 (1966)
Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417 (1987)
Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283 (1980)
Parker JL, Prog. Surf. Sci., 47(3), 205 (1994)
Park JW, Ahn DJ, Colloids & Surf. B: Biointerfaces, 62(1), 157 (2008)
Ducker WA, Senden TJ, Pashley RM, Nature, 353(6341), 239 (1991)
Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404 (1989)
Choi JY, Kim DK, J. Sol-Gel Sci. Tech., 158, 231 (1999)
Schultz M, Grimm St, Burckhardt W, Solid States Ionics, 63, 18 (1993)
Pashley RM, J. Colloid Interface Sci., 83(2), 531 (1981)
Hugon A, Delannoy L, Louis C, Gold Bull., 41, 127 (2008)
Zhang X, Shi H, Xu BQ, J. Catal., 279(1), 75 (2011)
Wang CM, Fan KN, Liu ZP, J. Am. Chem. Soc., 129(9), 2642 (2007)
Kwak JH, Han GY, Bae JW, Yoon KJ, Korean J. Chem. Eng., 31(6), 961 (2014)
Kim MY, Seo G, Park JH, Shin CH, Kim ES, Korean Chem. Eng. Res., 49(1), 1 (2011)
Arrii S, Morfin F, Renouprez AJ, Rousset JL, J. Am. Chem. Soc., 126(4), 1199 (2004)
Zhang X, Wang H, Xu BQ, J. Phys. Chem. B, 109(19), 9678 (2005)
Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998)
Sakurai H, Tsubota S, Haruta M, Appl. Catal. A-General, 102, 125 (1993)
Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28, 1015 (2007)
Schmid G, Chem. Rev., 92, 1709 (1992)
Noh J, Park H, Jeong Y, Kwon S, Bull. Korean Chem. Soc., 27, 403 (2006)
Dasog M, Scott RWJ, Langmuir, 12, 3381 (2007)
Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 33 (2001)
Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089 (2001)
Binnig G, Quate C, Gerber G, Phys. Rev. Lett., 56, 930 (1986)
Derjaguin BV, Landau L, Acta Physiochem. URSS, 14(11), 633 (1941)
Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64(2), 403 (1993)
Derjaguin B, Trans. Faraday Soc., 35(3), 203 (1940)
Israelachvili JN, Adams GE, J. Chem. Soc. Faraday Trans., 74, 975 (1978)
Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108 (1993)
Parker JL, Christenson HK, J. Chem. Phys., 88(12), 8013 (1988)
O'Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336 (1994)
Derjaguin BV, Kolloid Z., 69, 155 (1934)
Hartmann U, Phys. Rev. B, 43, 2404 (1991)
Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183-192 (1991)
Shin H, Agarwal M, de Guire MR, Heuer AH, Acta Mater., 46, 801 (1998)
Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63 (1948)
Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., 62(522), 1638 (1966)
Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417 (1987)
Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283 (1980)
Parker JL, Prog. Surf. Sci., 47(3), 205 (1994)
Park JW, Ahn DJ, Colloids & Surf. B: Biointerfaces, 62(1), 157 (2008)
Ducker WA, Senden TJ, Pashley RM, Nature, 353(6341), 239 (1991)
Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404 (1989)
Choi JY, Kim DK, J. Sol-Gel Sci. Tech., 158, 231 (1999)
Schultz M, Grimm St, Burckhardt W, Solid States Ionics, 63, 18 (1993)
Pashley RM, J. Colloid Interface Sci., 83(2), 531 (1981)