ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 24, 2014
Accepted February 21, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

인도네시아 갈탄의 촤-CO2 촉매가스화 반응특성연구

Kinetic Study on Char-CO2 Catalytic Gasification of an Indonesian lignite

충남대학교 바이오응용화학과, 305-764 대전광역시 유성구 대학로 99 1충남대학교 에너지과학기술대학원, 305-764 대전광역시 유성구 대학로 99 2한국에너지기술연구원, 305-343 대전광역시 유성구 가정로 152
Department of Applied Chemistry and Biological Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea 1Graduate school of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea 2Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea
Korean Chemical Engineering Research, August 2014, 52(4), 544-552(9), 10.9713/kcer.2014.52.3.279 Epub 30 July 2014
downloadDownload PDF

Abstract

본 연구는 인도네시아 갈탄인 로토(Roto) 탄의 촤(char)-CO2 촉매가스화 kinetic 분석을 열중량분석기(thermogravimetric analysis, TGA)를 이용하여 수행하였다. 촉매는 Na2CO3, K2CO3, CaCO3 및 천연광물 촉매로 dolomite을 선정하였으며, 석탄과 촉매의 물리적 혼합을 통하여 촤를 제조하였다. 촤-CO2 촉매가스화반응은 850 oC에서 CO2 농도가 60 vol%, 촉매 함량은 Na2CO3를 7 wt% 혼합할 때 가장 빠른 탄소전환율을 보여주었다. 750~900 ℃ 등온조건에서 촤-CO2 촉매 가스화 반응결과, 온도가 증가할수록 탄소전환율 속도가 빨라졌으며, 기-고체 반응모델 shrinking core model(SCM),_x000D_ volumetric reaction model(VRM), modified volumetric reaction model(MVRM)을 실험결과에 적용하였을 때, MVRM이 로토 탄의 가스화반응 거동을 잘 예측하였다. 특히 Arrhenius plot을 통한 활성화에너지는 Na2CO3와 K2CO3를 혼합한 촤의 활성화에너지가 각각 67.03~77.09 kJ/mol, 53.14~67.99 kJ/mol으로 우수한 촉매 활성을 보여주었다.
In this study, We have investigated the kinetics on the char-CO2 gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-CO2 catalytic gasification of an Indonesian Roto lignite. Na2CO3, K2CO3, CaCO3 and dolomite were selected as catalyst which was physical mixed with coal. The char-CO2 gasification reaction showed rapid an increase of carbon conversion rate at 60 vol% CO2 and 7 wt% Na2CO3 mixed with coal. At the isothermal conditions range from 750 oC to 900 ℃, the carbon conversion rates increased as the temperature increased. Three kinetic models for gas-solid reaction including the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM model for the Roto lignite. The activation energies for each char mixed with Na2CO3 and K2CO3 were found a 67.03~77.09 kJ/mol and 53.14~67.99 kJ/mol.

References

Kang SH, Lee SJ, Jung WH, Chung SW, Yun Y, Jo SH, Park YC, Baek JI, Korean J. Chem. Eng., 30(1), 67 (2013)
Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80 (2010)
Lee S, Kim S, Korean Chem. Eng. Res., 46(3), 443 (2008)
Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372 (2011)
Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
Trommer D, Steinfeld A, Energy Fuels, 20(3), 1250 (2006)
Sun ZQ, Wu JH, Zhang DK, Energy Fuels, 22(4), 2160 (2008)
Spiro CL, McKee DW, Kosky PG, Lamby EJ, Fuel, 62(2), 180 (1983)
Park ST, Choi YT, Sohn JM, J. Ind. Eng. Chem., 22, 312 (2011)
Korea Resource Corporation, “State of Mineral Reserves,” 20-21 (2009)
Kim YT, Seo DK, Hwang JH, Journal of the Korean Society of Combustion, 15(2), 41 (2010)
Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306 (2013)
Wen CY, Ind. & Eng. Chem., 60(9), 34 (1968)
Ishida M, Wen CY, AIChE J., 14(2), 311 (1968)
Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1) (1985)
Jaffri GER, Zhang JY, Chin. J. Chem. Eng., 16(4), 575 (2008)
Li S, Cheng Y, Fuel, 74(3), 456 (1995)
Choi YK, Moon SH, Lee HI, Lee WY, Lee HK, Korean Chem. Eng. Res., 30(4), 415 (1992)
Mckee DW, Fuel, 62(2), 170 (1983)
Dutta S, Wen CY, Belt RJ, Ind. Eng. Chem, Process Des. Dev., 16(1), 20 (1977)
Song BH, Kang SK, Kim SD, Korean Chem. Eng. Res., 30(6), 749 (1992)
Wen WY, Catal. Rev., 22(1), 1 (1980)
Wood BJ, Fleming RH, Wise H, Fuel, 63(11), 1600 (1984)
Pigford RL, Sliger G, Ind. Eng. Chem. Process Des. Dev., 12(1), 85 (1973)
Elliott, Anderson M, “Chemistry of Coal Utilization. Second Supplementary Volume,” (1981)
Ahn DH, Gibbs BM, Ko KH, Kim JJ, Fuel, 80(11), 1651 (2001)
Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201 (2006)
Tangsathitkulchai C, Junpirom S, Katesa J, Engineering Journal, 17(1), 13 (2012)
McKee DW, Carbon, 20(1), 59 (1982)
Sams DA, Talverdian T, Shadman F, Fuel, 64, 1208 (1985)
Li S, Cheng Y, Fuel, 74(3), 456 (1995)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로