Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 20, 2014
Accepted May 9, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
석탄 가스화 복합 발전 플랜트의 분류층 가스화기 제어를 위한 선형 모델 예측 제어 기법
Linear Model Predictive Control of an Entrained-flow Gasifier for an IGCC Power Plant
한국과학기술원 생명화학공학과, 305-701 대전 유성구 대학로 291
Department of Biomolecular and Chemical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
Korean Chemical Engineering Research, October 2014, 52(5), 592-602(11), 10.9713/kcer.2014.52.5.592 Epub 1 October 2014
Download PDF
Abstract
석탄 가스화 복합 발전(coal-based IGCC power plant)에서 가스화기의 동적 상태와 성능이 플랜트 전체에 큰 영향을 미치므로, 가스화기가 문제 없이 운전 되도록 제어 하는 것은 전체 플랜트의 가동률을 높이는 데 있어 매우 중요한 일이라 할 수 있다. 가스화기의 안정적인 운전을 위해서는 고체 슬래그 층의 두께가 일정하게 유지되어야 하는데, 고체슬래그 두께는 실시간 측정이 불가능하기 때문에 상태를 추정하여 추론 제어해야 한다. 본 연구에서는 Shell-type 가스화기의 동적 모사 모델을 개발하고 다변수 시스템의 추론 제어를 위한 방법으로 두 가지 선형 예측 제어 기법을 적용하여 그 특성을 분석하였다. 측정되지 않는 변수의 상태 추정을 위해 Kalman 필터 기법을 이용하였다. 측정 불가능한 1차 변수를 대신하여 측정 가능한 2차 변수를 제어하는 전통적인 추론 제어 기법으로는 외란의 종류에 따라 추론 제어가 불가능 할 수 있음을 확인하였고, 측정되지 않는 슬래그 두께를 Kalman 필터 기법을 이용하여 추정하여 성능 예측에 반영하고 외란 모델을 사용하여 예측 제어하는 경우 두 가지 측정 불가능한 외란 모두에 대해 추론 제어가 가능함을 확인하였다.
In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences on the rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stable operation of the entrained-flow gasifier and for protection of the gasifier wall from the high internal temperature, the solid slag layer thickness should be regulated tightly but its control is hampered by the lack of on-line measurement for_x000D_
it. In this study, a previously published dynamic simulation model of a Shell-type gasifier is reproduced and two different linear model predictive control strategies are simulated and compared for multivariable control of the entrained-flow gasifier. The first approach is to control a measured secondary variable as a surrogate to the unmeasured slag thickness. The control results of this approach depended strongly on the unmeasured disturbance type. In other words, the slag thickness could not be controlled tightly for a certain type of unmeasured disturbance. The second approach is to estimate the unmeasured slag thickness through the Kalman filter and to use the estimate to predict and control the slag thickness directly. Using the second approach, the slag thickness could be controlled well regardless of the type of unmeasured disturbances.
Keywords
References
“2010 Worldwide gasification database,” US Department of Energy’s National Energy Technology Laboratory (2010)
Paek M, “300MW IGCC Gasification Plant Engineering and Technology Development Status,” Green Energy International Business Conference, Daegu, Korea (2011)
“The 6th basic plan on electricity demand,” Ministry of knowledge economy of Korea government, Korea (2013)
Phillips J, “CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle(IGCC) Power Plants,” EPRI, Palo Alto, CA (2006)
Rao A, “Combined cycle systems for near-zero emission power generation,” Woodhead Publishing (2012)
Seggiani M, Fuel, 77(14), 1611 (1998)
Montagnaro F, Salatino P, Combust. Flame, 157(5), 874 (2010)
Massoudi M, Wang P, Energies, 6, 807 (2013)
Lee J, International Journal of Control, Automation, and Systems, 9, 415 (2011)
Yeu J, Kim W, Im J, Lee D, Jee G, Journal of Institute of Control, Robotics and Systems, 18(12), 1132 (2012)
Wen CY, Chaung TZ, Ind. Eng. Chem. Process Des. Dev., 18, 684 (1979)
Valero A, Uson S, Energy, 31(10-11), 1643 (2006)
Govind R, Shah J, AIChE J., 30, 79 (1984)
Lee J, Park S, Seo H, Kim M, Kim S, Chi J, Kim K, Korean J. Chem. Eng., 29(5), 574 (2012)
Robinson PJ, Luyben WL, Ind. Eng. Chem. Res., 47(20), 7784 (2008)
Watanabe H, Otaka M, Fuel, 85(12-13), 1935 (2006)
Sun B, Liu YW, Chen X, Zhou QL, Su M, Fuel Process. Technol., 92(8), 1418 (2011)
Monaghan RFD, Ghoniem AF, Fuel, 91(1), 61 (2012)
Park YC, Moon JH, Lee SY, Lee DH, Jin GT, Korean Chem. Eng. Res., 50(3), 511 (2012)
Ra HW, Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean Chem. Eng. Res., 48(2), 129 (2010)
Gnielinski V, International Chemical Engineering, 16(2), 359 (1976)
Mills K, Rhine J, Fuel, 68, 904 (1989)
Schobert H, Streeter R, Diehl E, Fuel, 64(11), 1611 (1985)
Mills K, Keene B, Int. Mater. Rev., 32(1), 1 (1987)
Dixon R, Pike W, Donne S, J. Syst. Control Eng., 214, 389 (2000)
Dixon R, Comput. Control Eng. IEE, 10, 21 (2005)
Seyab A, Cao Y, Yang S, IEE Proc.-Control Theory Appl., 153(3), 293 (2006)
Al Seyab RK, Cao Y, J. Process Control, 16(8), 795 (2006)
Bittanti S, Calloni L, Canevese S, Marco A, Prandoni V, “A Clean-coal Control Technology Application Study: Modelling and Control Issues for a Coal Gasifier,” 7th IFAC International Symposium on Advanced Control of Chemical Processes, Turkey (2009)
Muske KR, Badgwell TA, J. Process Control, 12(5), 617 (2002)
Bemporad A, Morari M, Ricker NL, “Model Predictive Control Toolbox User’s Guide,” The MathWorks Inc., Natick, MA (2012)
Paek M, “300MW IGCC Gasification Plant Engineering and Technology Development Status,” Green Energy International Business Conference, Daegu, Korea (2011)
“The 6th basic plan on electricity demand,” Ministry of knowledge economy of Korea government, Korea (2013)
Phillips J, “CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle(IGCC) Power Plants,” EPRI, Palo Alto, CA (2006)
Rao A, “Combined cycle systems for near-zero emission power generation,” Woodhead Publishing (2012)
Seggiani M, Fuel, 77(14), 1611 (1998)
Montagnaro F, Salatino P, Combust. Flame, 157(5), 874 (2010)
Massoudi M, Wang P, Energies, 6, 807 (2013)
Lee J, International Journal of Control, Automation, and Systems, 9, 415 (2011)
Yeu J, Kim W, Im J, Lee D, Jee G, Journal of Institute of Control, Robotics and Systems, 18(12), 1132 (2012)
Wen CY, Chaung TZ, Ind. Eng. Chem. Process Des. Dev., 18, 684 (1979)
Valero A, Uson S, Energy, 31(10-11), 1643 (2006)
Govind R, Shah J, AIChE J., 30, 79 (1984)
Lee J, Park S, Seo H, Kim M, Kim S, Chi J, Kim K, Korean J. Chem. Eng., 29(5), 574 (2012)
Robinson PJ, Luyben WL, Ind. Eng. Chem. Res., 47(20), 7784 (2008)
Watanabe H, Otaka M, Fuel, 85(12-13), 1935 (2006)
Sun B, Liu YW, Chen X, Zhou QL, Su M, Fuel Process. Technol., 92(8), 1418 (2011)
Monaghan RFD, Ghoniem AF, Fuel, 91(1), 61 (2012)
Park YC, Moon JH, Lee SY, Lee DH, Jin GT, Korean Chem. Eng. Res., 50(3), 511 (2012)
Ra HW, Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean Chem. Eng. Res., 48(2), 129 (2010)
Gnielinski V, International Chemical Engineering, 16(2), 359 (1976)
Mills K, Rhine J, Fuel, 68, 904 (1989)
Schobert H, Streeter R, Diehl E, Fuel, 64(11), 1611 (1985)
Mills K, Keene B, Int. Mater. Rev., 32(1), 1 (1987)
Dixon R, Pike W, Donne S, J. Syst. Control Eng., 214, 389 (2000)
Dixon R, Comput. Control Eng. IEE, 10, 21 (2005)
Seyab A, Cao Y, Yang S, IEE Proc.-Control Theory Appl., 153(3), 293 (2006)
Al Seyab RK, Cao Y, J. Process Control, 16(8), 795 (2006)
Bittanti S, Calloni L, Canevese S, Marco A, Prandoni V, “A Clean-coal Control Technology Application Study: Modelling and Control Issues for a Coal Gasifier,” 7th IFAC International Symposium on Advanced Control of Chemical Processes, Turkey (2009)
Muske KR, Badgwell TA, J. Process Control, 12(5), 617 (2002)
Bemporad A, Morari M, Ricker NL, “Model Predictive Control Toolbox User’s Guide,” The MathWorks Inc., Natick, MA (2012)