Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 26, 2014
Accepted March 31, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
친수성 이온성 액체를 이용한 수상이성분계에서의 아크릴산 추출 평형
Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids
한국교통대학교 화공생물공학과, 380-702 충북 충주시 대학로 50
Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 380-702, Korea
Korean Chemical Engineering Research, October 2014, 52(5), 627-631(5), 10.9713/kcer.2014.52.5.627 Epub 1 October 2014
Download PDF
Abstract
본 연구에서는 아크릴산 추출을 위한 효과적인 분리공정으로서 모폴린계 이온성 액체/K2HPO4에 의한 수상이성분계를 적용하여 수상이성분계 형성 특성 및 아크릴산 추출 효율에 대한 모폴린계 이온성 액체의 양이온 알킬사슬 길이의 영향을 고찰하였다. 실험 결과 K2HPO4 수용액에 적정량의 모폴린계 이온성 액체를 첨가함에 따라 안정한 수상이성분계가 형성됨을 확인할 수 있었으며 이성분계 형성능력은 [HMMor][Br]>[OMMor][Br]>[BMMor][Br]> [EMMor][Br]의 순서로 나타났다. K2HPO4 수용액을 기준으로 모폴린계 이온성 액체의 수상이성분계 형성 능력은 기존의 이미다졸계와 큰 차이가 없었으며 친수성알콜/K2HPO4와 비교했을 경우에는 적은양으로도 수상이성분계 형성이 가능하였다. 모폴린계 이온성 액체를 이용한 수상이성분계 추출에 있어 아크릴산 추출 효율은 50~90%의 범위를 가지며 이 값들은 이미다졸계와 큰 차이가 없었다. 모폴린계 이온성 액체가 이미다졸계 이온성 액체에 비해 경제적으로 생산할 수 있으므로 모폴린계 이온성 액체와 K2HPO4로 구성된 수상이성분계는 아크릴산을 포함한 각종 생물공정에 의한 제품 분리에 효과적임을 알 수 있었다.
As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K2HPO4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50~90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K2HPO4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K2HPO4 systems because of their lower cost.
References
Kyuchoukov G, Yankov D, Ind. Eng. Chem. Res., 51, 9117 (2010)
Hong YK, Hong WH, Korean J. Chem. Eng., 21(2), 488 (2004)
Hong YK, Hong WH, Sep. Purif. Technol., 42(2), 151 (2005)
Keshav A, Wasewar KL, Chand S, Ind. Eng. Chem. Res., 48(2), 888 (2009)
Martyn JE, Seddon KR, Pure Appl. Chem., 72, 1391 (2000)
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
Kaur G, Srivastava AK, Chand S, Biochem. Eng. J., 64, 106 (2012)
Li ZG, Jiang B, Zhang DJ, Xiu ZL, Sep. Purif. Technol., 66(3), 472 (2009)
Mourao T, Claudio AFM, Boal-Palheiros I, Freire MG, Coutinho JAP, J. Chem. Thermodyn., 54, 398 (2012)
Li Z, Teng H, Xiu Z, Process Biochem., 45, 731 (2010)
Jiang B, Li ZG, Dai JY, Zhang DJ, Xiu ZL, Process Biochem., 44, 112 (2009)
Pei YC, Wang JJ, Wu K, Xuan XP, Lu XJ, Sep. Purif. Technol., 64(3), 288 (2009)
Claudio AFM, Freire MG, Freire CSR, Silvestre AJD, Coutinho JAP, Sep. Purif. Technol., 75(1), 39 (2010)
Kim HT, Hong YK, Kang JW, Lee YW, Kim KS, Korean Chem. Eng. Res., 50(4), 702 (2012)
Khara DC, Kumar JP, Mondal N, Samanta A, J. Phys. Chem. B, 117(17), 5156 (2013)
Kim KS, Choi S, Demberelnyamba D, Lee H, Oh J, Lee BB, Mun SJ, Chem. Commun., 828 (2004)
Hong YK, Korean Chem. Eng. Res., 51(5), 575 (2013)
Hong YK, Hong WH, Korean J. Chem. Eng., 21(2), 488 (2004)
Hong YK, Hong WH, Sep. Purif. Technol., 42(2), 151 (2005)
Keshav A, Wasewar KL, Chand S, Ind. Eng. Chem. Res., 48(2), 888 (2009)
Martyn JE, Seddon KR, Pure Appl. Chem., 72, 1391 (2000)
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
Kaur G, Srivastava AK, Chand S, Biochem. Eng. J., 64, 106 (2012)
Li ZG, Jiang B, Zhang DJ, Xiu ZL, Sep. Purif. Technol., 66(3), 472 (2009)
Mourao T, Claudio AFM, Boal-Palheiros I, Freire MG, Coutinho JAP, J. Chem. Thermodyn., 54, 398 (2012)
Li Z, Teng H, Xiu Z, Process Biochem., 45, 731 (2010)
Jiang B, Li ZG, Dai JY, Zhang DJ, Xiu ZL, Process Biochem., 44, 112 (2009)
Pei YC, Wang JJ, Wu K, Xuan XP, Lu XJ, Sep. Purif. Technol., 64(3), 288 (2009)
Claudio AFM, Freire MG, Freire CSR, Silvestre AJD, Coutinho JAP, Sep. Purif. Technol., 75(1), 39 (2010)
Kim HT, Hong YK, Kang JW, Lee YW, Kim KS, Korean Chem. Eng. Res., 50(4), 702 (2012)
Khara DC, Kumar JP, Mondal N, Samanta A, J. Phys. Chem. B, 117(17), 5156 (2013)
Kim KS, Choi S, Demberelnyamba D, Lee H, Oh J, Lee BB, Mun SJ, Chem. Commun., 828 (2004)
Hong YK, Korean Chem. Eng. Res., 51(5), 575 (2013)