ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 4, 2014
Accepted May 14, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

미세 채널에서 칼슘이온 물질전달을 이용한 단분산성 알지네이트 하이드로젤 입자의 실시간 젤화

In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

충남대학교 화학공학과, 305-764대전광역시 유성구 대학로 99
Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
rhadum@cnu.ac.kr
Korean Chemical Engineering Research, October 2014, 52(5), 632-637(6), 10.9713/kcer.2014.52.5.632 Epub 1 October 2014
downloadDownload PDF

Abstract

본 논문은 가교제의 물질전달을 통한 실시간 생체고분자의 젤화 과정으로 단분산성을 갖는 구형의 알지네이트 하이드로젤을 미세유체 채널 내에서 제조하는 방법에 관한 연구이다. 먼저 미세유체 채널 내에서 단분산성 알지네이트 액적들을 형성하고 연속상에 분산된 염화칼슘 분자들의 물질전달 과정을 통해 실시간 젤화과정이 이루어지게 하여 알지네이트 하이드로젤 입자를 제조하였다. 이때, 미세유체 채널에서 형성되는 액적의 크기는 손쉽게 케필러리 수(capillary number)와 분산상의 유속 조절을 통하여 제어할 수 있다. 본 방법은 미세유체 채널 내에서 안정적인 액적을 형성할 수 있고 칼슘 가교제로 제조된 알지네이트 하이드로젤 입자들은 균일한 크기 분포를 가지며(C.V=2.71%) 유속, 점도, 및계면장력의 조절을 통하여 30 μm에서 60 μm까지의 다양한 크기의 알지네이트 하이드로젤 입자를 제조할 수 있다. 본 논문에서 제시한 간단한 미세유체 접근방법을 통해 제조되는 단분산성을 갖는 알지네이트 하이드로젤 입자는 생체물질들을 손쉽게 함입(encapsulation)할 수 있으며 이는 식품, 화장품, 잉크 및 약물 등의 전달체로 활용이 가능하고 생체적합성이 뛰어나 세포이식 분야에도 활용될 가능성이 있다.
A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping,_x000D_ jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 μm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

References

Desai A, Kisaalita WS, Keith C, Wu ZZ, Biosens Bioelectron, 21, 1483 (2006)
Norton LW, Tegnell E, Toporek SS, Reichert WM, Biomaterials, 26, 3285 (2005)
Frykman S, Srienc F, Biotechnol. Bioeng., 59(2), 214 (1998)
Xu B, Iwata H, Miyamoto M, Balamurugan AN, Murakami Y, Cui W, Imamura M, Inoue K, Cell Transplant, 10(4-5), 403 (2001)
Dove A, Nat Biotechnol., 20, 339 (2002)
Borisov SM, Wolfbeis OS, Anal Chem., 78, 5094 (2006)
Goponenko AV, Asher SA, J. Am. Chem. Soc., 127(30), 10753 (2005)
Ben-Moshe M, Alexeev VL, Asher SA, Anal Chem., 78, 5149 (2006)
Tan YC, Hettiarachchi K, Siu M, Pan YP, J. Am. Chem. Soc., 128(17), 5656 (2006)
Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS, Biomed Microdevices, 9, 855 (2007)
Silva CM, Ribeiro AJ, Figueiredo IV, Goncalves AR, Veiga F, Int J Pharm, 311(1-2), 1 (2006)
Sugiura S, Oda T, Aoyagi Y, Matsuo R, Enomoto T, Matsumoto K, Nakamura T, Satake M, Ochiai A, Ohkohchi N, Nakajima M, Biomed Microdevices, 9, 91 (2007)
Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M, Biomaterials, 26(16), 3327 (2005)
Halle JP, Leblond FA, Pariseau JF, Jutras P, Brabant MJ, Lepage Y, Cell Transplant, 3(5), 365 (1994)
Whitesides GM, Nature, 442(7101), 368 (2006)
Huh YS, Jeon SJ, Lee EZ, Park HS, Hong WH, Korean J. Chem. Eng., 28(3), 633 (2011)
Min SK, Lee BM, Hwang JH, Ha SH, Shin HS, Korean J. Chem. Eng., 29(3), 392 (2012)
Jeong HH, Lee SH, Lee CS, Biosens. Bioelectron., 47, 278 (2013)
Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545 (2010)
Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E, J. Am. Chem. Soc., 127(22), 8058 (2005)
Zourob M, Mohr S, Mayes AG, Macaskill A, Perez-Moral N, Fielden PR, Goddard NJ, Lab on a Chip., 6(2), 296 (2006)
Tan WH, Takeuchi S, Adv. Mater., 19(18), 2696 (2007)
Huang KS, Lai TH, Lin YC, Lab on a Chip., 6(7), 954 (2006)
Agarwal P, Zhao ST, Bielecki P, Rao W, Choi JK, Zhao Y, Yu JH, Zhang WJ, He XM, Lab on a Chip, 13, 4525 (2013)
Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E, J. Am. Chem. Soc., 128(37), 12205 (2006)
Dreyfus R, Tabeling P, Willaime H, Phys. Rev. Lett., 90(14) (2003)
Xu JH, Luo GS, Li SW, Chen GG, Lab on a Chip, 6(1), 131 (2006)
Choi CH, Jung JH, Lee CS, Korean Chem. Eng. Res., 48(4), 470 (2010)
Nie ZH, Seo MS, Xu SQ, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA, Microfluidics and Nanofluidics, 5(5), 585 (2008)
Yobas L, Martens S, Ong WL, Ranganathan N, Lab Chip, 6, 1073 (2006)
Zhou C, Yue P, Feng JJ, Physics of Fluids, 18, 1 (2006)
Peng L, Yang M, Guo SS, Liu W, Zhao XZ, Biomed Microdevices, 13, 559 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로