Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 19, 2014
Accepted April 12, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
사탕수수 부산물의 반탄화 특성에 관한 연구
A Study on Torrefaction Characteristics of Baggase
공주대학교 기계자동차공학부, 330-717 충남 천안시 서북구 천안대로 1223-23 1한밭대학교 건설환경공학과, 305-719 대전 유성구 동서대로 125 2공주대학교 환경공학과, 330-717 충남 천안시 서북구 천안대로 1223-23
Division of Mechanical and Automotive Engineering, Kongju National University, 1223-23 Cheonandae-ro, Seobuk-gu, Cheonan, Chungnam 330-717, Korea 1Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseodae-ro, Yuseong-gu, Daejeon 305-719, Korea 2Department of Environmental Engineering, Kongju National University, 1223-23 Cheonandae-ro, Seobuk-gu, Cheonan, Chungnam 330-717, Korea
ohsec@kongju.ac.kr
Korean Chemical Engineering Research, October 2014, 52(5), 672-677(6), 10.9713/kcer.2014.52.5.672 Epub 1 October 2014
Download PDF
Abstract
반탄화는 200~300 ℃의 불활성분위기에서 바이오매스를 전처리하는 열처리공정이며 이러한 반탄화 공정은 바이오매스에 함유된 섬유질성분의 분해온도에 크게 영향을 받은 것으로 알려져 있다. 본 연구에서는 사탕수수 부산물의 반탄화 특성에 관한 연구를 수행하였으며 반탄화 온도 및 반탄화 시간에 따른 에너지 수율, 발열량 및 발생가스 그리고 가연분과 회분의 관계에 중점을 두었다. 또한 본 연구에서는 TGA(Thermogravimetric Analyzer)를 이용한 사탕수수 부산물의 반탄화 반응에 대한 활성화 에너지의 변화도 함께 고찰하였다. 본 연구로부터 반탄화 온도에 따라 회분 및 발열량은 증가하였으나 가연분 및 에너지 수율은 감소하였으며 또한 산소성분을 함유한 일산화탄소가 탄화수소 화합물, CxHy 보다 더 낮은 온도에서 분해되기 시작하는 것을 확인할 수 있었다.
Torrefaction is a thermal treatment process to pre-treat biomass at temperature of 200~300 ℃ under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass. In this work, the torrefaction characteristics of baggase has been studied. This study focuses on the relation between the energy yields, heating values, gas emission, volatile and ash constituents with torrefaction temperatures and times. The activation energies of baggase torrefaction has been studied by using TGA (Thermogravimetric Analyzer). From this work, it was seen that ash constituents and heating values were increased with torrefaction temperature, while volatile constituents and energy yields decreased. It was also found that carbon monoxide containing oxygen were decomposed at a lower temperature than those of hydrocarbon compounds, CxHy.
References
Shuit SH, Tan KT, Lee KT, Kamaruddin AH, Energy, 34(9), 1225 (2009)
Zhang LH, Xu CB, Champagne P, Energy Conv. Manag., 51(5), 969 (2010)
Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z, Prog. Energy Combust. Sci., 26(1), 1 (2000)
Goyal H, Seal D, Saxena R, Renewable and Sustainable Energy Reviews, 12, 504 (2008)
Prompubess C, Mekasut L, Piumsomboon P, Kuchontara P, Korean J. Chem. Eng., 24(6), 989 (2007)
Prins MJ, Ptasinski KJ, Janssen FJJG, J. Anal. Appl. Pyrolysis, 77, 35 (2006)
Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ, Fuel Process. Technol., 89(2), 169 (2008)
Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC, Energy, 36(5), 3012 (2011)
Uemura Y, Omar WN, Tsutsui T, Yusup SB, Fuel, 90(8), 2585 (2011)
van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ, Biomass Bioenerg., 35(9), 3748 (2011)
Couhert C, Salvador S, Commandre JM, Fuel, 88(11), 2286 (2009)
Chen WH, Kuo PC, Energy, 35(6), 2580 (2010)
Repellin V, Govin A, Rolland M, Guyonnet R, Biomass Bioenerg., 34(5), 602 (2010)
Lee MS, Jeong G, Jung SJ, Lee KY, Korean Chem. Eng. Res., 51(4), 465 (2013)
Lee JW, Kim YH, Lee SM, Lee HW, Korean Chem. Eng. Res., 50(2), 385 (2012)
Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
Cooney JD, Day M, Wiles DM, J. Appl. Polym. Sci., 28, 2887 (1983)
Zhang LH, Xu CB, Champagne P, Energy Conv. Manag., 51(5), 969 (2010)
Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z, Prog. Energy Combust. Sci., 26(1), 1 (2000)
Goyal H, Seal D, Saxena R, Renewable and Sustainable Energy Reviews, 12, 504 (2008)
Prompubess C, Mekasut L, Piumsomboon P, Kuchontara P, Korean J. Chem. Eng., 24(6), 989 (2007)
Prins MJ, Ptasinski KJ, Janssen FJJG, J. Anal. Appl. Pyrolysis, 77, 35 (2006)
Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ, Fuel Process. Technol., 89(2), 169 (2008)
Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC, Energy, 36(5), 3012 (2011)
Uemura Y, Omar WN, Tsutsui T, Yusup SB, Fuel, 90(8), 2585 (2011)
van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ, Biomass Bioenerg., 35(9), 3748 (2011)
Couhert C, Salvador S, Commandre JM, Fuel, 88(11), 2286 (2009)
Chen WH, Kuo PC, Energy, 35(6), 2580 (2010)
Repellin V, Govin A, Rolland M, Guyonnet R, Biomass Bioenerg., 34(5), 602 (2010)
Lee MS, Jeong G, Jung SJ, Lee KY, Korean Chem. Eng. Res., 51(4), 465 (2013)
Lee JW, Kim YH, Lee SM, Lee HW, Korean Chem. Eng. Res., 50(2), 385 (2012)
Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
Cooney JD, Day M, Wiles DM, J. Appl. Polym. Sci., 28, 2887 (1983)