Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 31, 2014
Accepted April 26, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
연료전지차량용 연료개질기에 대한 최적연료비교연구
A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network
서울대학교 화학생물공학부, 151-744 서울시 관악구 관악로 1
School of chemical and biological engineering, 1 Gwanak-ro., Gwanak-gu, Seoul 151-744, Korea
chhan@snu.ac.kr
Korean Chemical Engineering Research, December 2014, 52(6), 720-726(7), 10.9713/kcer.2014.52.6.720 Epub 1 December 2014
Download PDF
Abstract
PEMFC(Proton Exchange Membrane Fuel Cell) 차량은 미래 청정수송기관으로 각광받고 있지만 수소스테이션의 인프라부족으로 현재는 수소를 공급해주는 연료개질기를 함께 장착하여 구동하여야 한다. 탄화수소연료로부터 수소를 생산하는 연료개질기를 대상으로 다양한 연구가 진행되어왔는데 기존연구에서는 열적중립 조건의 ATR(Auto-Thermal Reformer) 반응기에 대해 집중적으로 분석하거나 공정최적화부문에서 최대수소생산을 목표로 주로 열효율을 목적함수로 설정하여 평가해 왔다. 본 연구에서는 100 kW PEMFC용 연료개질기를 대상으로 간단한 소형시스템을 얻기 위해 외부 유틸리티가 필요없는 단열열교환망으로 구성된 조건에서 기존 열효율이 아닌 수소효율을 새로이 정의하여 가솔린, LPG, 디젤 각 연료에 대해 최적운전조건을 도출하였다. 가솔린의 경우 기존 비교문헌보다 9.43% 연료절감효과를 얻음으로써 제안한 목적함수의 타당성을 입증하였고, 추가적으로 수소효율 및 열교환량, 열교환면적에 대한 민감도 분석을 실시하였다. 마지막으로 제안한 시스템을 한국시장에 적용할 경우 LPG 연료를 사용하는 연료개질기가 가장 경제적임을 알 수 있었다.
PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn’t guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of_x000D_
gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated_x000D_
as the most economical fuel in Korean market.
References
Joo OS, Korean Chem. Eng. Res., 49(6), 688 (2011)
Youn MH, Seo JG, Cho KM, Jung JC, Kim H, La KW, Park DR, Park S, Lee SH, Song IK, Korean J. Chem. Eng., 25(2), 236 (2008)
Kim MS, Lee SY, Kwak JH, Han GY, Yoon KJ, Korean J. Chem. Eng., 28(9), 1833 (2011)
Recupero V, Pino L, Vita A, Cipiti F, Cordaro M, Lagana M, Int. J. Hydrog. Energy, 30(9), 963 (2005)
Loffler DG, Taylor K, Mason D, J. Power Sources, 117(1-2), 84 (2003)
Gokaliler F, Caglayan BS, Onsan ZI, Aksoylu AE, Int. J. Hydrog. Energy, 33(4), 1383 (2008)
Moon DJ, Sreekumar K, Lee SD, Lee BG, Kim HS, Appl. Catal. A: Gen., 215(1-2), 1 (2001)
Docter A, Lamm A, J. Power Sources, 84(2), 194 (1999)
Pereira C, Bae J, Ahmed S, Krumpelt M, “Liquid Fuel Reformer Development: Autothermal Reforming of Diesel Fuel,” Proceedings of the 2000 Hydrogen Program Review, NREL/CP-570-28890 (2000)
Cutillo A, Specchia S, Antonini M, Saracco G, Specchia V, J. Power Sources, 154(2), 379 (2006)
Sopena D, Melgar A, Briceno Y, Navarro RM, Alvarez-Galvan MC, Int. J. Hydrog. Energy, 32(10-11), 1429 (2007)
Ipsakis D, Voutetakis S, Papadopoulou S, Seferlis P, Int. J. Hydrog. Energy, 37(21), 16697 (2012)
Seo DJ, Yoon WL, Yoon YG, Park SH, Park GG, Kim CS, Electrochim. Acta, 50(2-3), 719 (2004)
Ryi SK, Park JS, Choi SH, Cho SH, Kim SH, Chem. Eng. J., 113(1), 47 (2005)
Caglayan BS, Onson ZI, Aksoylu AE, Catal. Lett., 102(1-2), 63 (2005)
Zeng GM, Tian Y, Li YD, Int. J. Hydrog. Energy, 35(13), 6726 (2010)
Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B, Nat. Mater., 7(4), 333 (2008)
Son IH, Lane AM, Catal. Lett., 76(3-4), 151 (2001)
Ahluwalia RK, Zhang QZ, Chmielewski DJ, Lauzze KC, Inbody MA, Catal. Today, 99(3-4), 271 (2005)
Georgakis C, Uzturk D, Subramanian S, Vinson DR, Control Eng. Pract., 11, 859 (2003)
Bisaria V, Smith RJB, Energy Conv. Manag., 76, 746 (2013)
Ersoz A, Olgun H, Ozdogan S, Energy, 31(10-11), 1490 (2006)
Ersoz A, Olgun H, Ozdogan S, Gungor C, Akgun F, Tiris M, J. Power Sources, 118(1-2), 384 (2003)
http://www.opinet.co.kr.
Youn MH, Seo JG, Cho KM, Jung JC, Kim H, La KW, Park DR, Park S, Lee SH, Song IK, Korean J. Chem. Eng., 25(2), 236 (2008)
Kim MS, Lee SY, Kwak JH, Han GY, Yoon KJ, Korean J. Chem. Eng., 28(9), 1833 (2011)
Recupero V, Pino L, Vita A, Cipiti F, Cordaro M, Lagana M, Int. J. Hydrog. Energy, 30(9), 963 (2005)
Loffler DG, Taylor K, Mason D, J. Power Sources, 117(1-2), 84 (2003)
Gokaliler F, Caglayan BS, Onsan ZI, Aksoylu AE, Int. J. Hydrog. Energy, 33(4), 1383 (2008)
Moon DJ, Sreekumar K, Lee SD, Lee BG, Kim HS, Appl. Catal. A: Gen., 215(1-2), 1 (2001)
Docter A, Lamm A, J. Power Sources, 84(2), 194 (1999)
Pereira C, Bae J, Ahmed S, Krumpelt M, “Liquid Fuel Reformer Development: Autothermal Reforming of Diesel Fuel,” Proceedings of the 2000 Hydrogen Program Review, NREL/CP-570-28890 (2000)
Cutillo A, Specchia S, Antonini M, Saracco G, Specchia V, J. Power Sources, 154(2), 379 (2006)
Sopena D, Melgar A, Briceno Y, Navarro RM, Alvarez-Galvan MC, Int. J. Hydrog. Energy, 32(10-11), 1429 (2007)
Ipsakis D, Voutetakis S, Papadopoulou S, Seferlis P, Int. J. Hydrog. Energy, 37(21), 16697 (2012)
Seo DJ, Yoon WL, Yoon YG, Park SH, Park GG, Kim CS, Electrochim. Acta, 50(2-3), 719 (2004)
Ryi SK, Park JS, Choi SH, Cho SH, Kim SH, Chem. Eng. J., 113(1), 47 (2005)
Caglayan BS, Onson ZI, Aksoylu AE, Catal. Lett., 102(1-2), 63 (2005)
Zeng GM, Tian Y, Li YD, Int. J. Hydrog. Energy, 35(13), 6726 (2010)
Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B, Nat. Mater., 7(4), 333 (2008)
Son IH, Lane AM, Catal. Lett., 76(3-4), 151 (2001)
Ahluwalia RK, Zhang QZ, Chmielewski DJ, Lauzze KC, Inbody MA, Catal. Today, 99(3-4), 271 (2005)
Georgakis C, Uzturk D, Subramanian S, Vinson DR, Control Eng. Pract., 11, 859 (2003)
Bisaria V, Smith RJB, Energy Conv. Manag., 76, 746 (2013)
Ersoz A, Olgun H, Ozdogan S, Energy, 31(10-11), 1490 (2006)
Ersoz A, Olgun H, Ozdogan S, Gungor C, Akgun F, Tiris M, J. Power Sources, 118(1-2), 384 (2003)
http://www.opinet.co.kr.