Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 30, 2014
Accepted August 24, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
철강공정 배기가스로부터 가스 하이드레이트 형성에 미치는 촉진제의 영향
Effects of Promoter on the Formation of Gas Hydrate from Blast Furnace Gas
포항공과대학교 화학공학과, 790-784 경북 포항시 남구 청암로 77 1포항산업과학연구원, 790-330 경북 포항시 남구 청암로 67 2Chemical and Biological Engineering Department Colorado School of Mines, Golden, CO 80401, USA
Department of Chemical Engineering, Pohang University of Science & Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea 1CO2 Project Team, Research Institute of Industrial Science & Technology, 67 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-330, Korea 2Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA, Korea
ce20047@postech.ac.kr
Korean Chemical Engineering Research, February 2015, 53(1), 103-110(8), 10.9713/kcer.2015.53.1.103 Epub 3 February 2015
Download PDF
Abstract
본 연구에서는 가스 하이드레이트 기술을 이용하여 철강 공정 배기가스로부터 CO2를 분리하는데 사용하는 여러 촉진제의 성능을 조사하였다. 이 실험에서는 CO2/N2 혼합가스 (CO2/N2=20/80, 40/60)와 CO2/N2 이외에 CO, H2가 첨가된 Blast furnace gas (BFG) 모델 가스를 대상 가스로 사용하였다. 촉진제로는 구조 II 하이드레이트를 형성한다고 알려진 tetrahydrofuran (THF), propylene oxide, 1,4-dioxane 를 사용하였으며, 각 가스에 대하여 촉진제를 농도별로 첨가했을때 상평형점의 변화를 측정하였다. 상평형점은 “연속” Quartz crystal microbalance (QCM) 방식을 이용하였다. 또한, Powder X-ray diffraction (PXRD) 분석을 통하여 촉진제의 첨가가 가스 하이드레이트 구조에 미치는 영향을 알아보았다.
In this work, the performance of various promoters was investigated used in CO2 separation from the gases emitted from steel-making process using gas hydrate technology. The studied promoters are tetrahydrofuran (THF), propylene oxide and 1,4-dioxane, which are all expected to form a structure II hydrate, and the target gases include CO2/N2 mixed gases (CO2/N2 = 20/80 and 40/60) and Blast Furnace Gas (BFG). The phase equilibrium points were measured when_x000D_
each promoter was added with various concentrations. For fast acquisition of abundant data, the “continuous” Quartz crystal microbalance (QCM) method was employed. In addition, the crystal structure of each gas hydrate was analyzed by Powder X-ray diffraction (PXRD).
References
https://www.ipcc.ch/report/ar5/wg1.
Association, W. S., “World Steel in Figures 2008. Brussels: World steel association,” (2008)
http://www.gir.go.kr/og/hm/ic/g/OGHMICG010M.do?year=2012&headerValue=04&leftValue=02.
http://www.ieagreen.org.uk/sr2p.htm.
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Lee BR, Ryu JH, Han K, Park DH, Lee KH, Lee IB, Korean Chem. Eng. Res., 48(2), 232 (2010)
Sloan Jr ED, Koh C, Clathrate Hydrates of Natural Gases, CRC press (2007)
Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189(1-2), 99 (2001)
Saito Y, Kawasaki T, Kondo T, Hiraoka R, “Methane Storage in Hydrate Phase with Water Soluble Guests,” Proceeding of the Second International Conference on Gas Hydrate, Toulouse, France, pp. 459-465 (1996)
Maekawa T, Fluid Phase Equilib., 303(1), 76 (2011)
Seo Y, Kang SP, Lee S, Lee H, J. Chem. Eng. Data, 53(12), 2833 (2008)
Mohammadi AH, Martinez-Lopez JF, Richon D, Chem. Eng. Sci., 65(22), 6059 (2010)
Strobel TA, Koh CA, Sloan ED, Fluid Phase Equilib., 280(1-2), 61 (2009)
Yoon JH, Korean J. Chem. Eng., 29(12), 1670 (2012)
Fan S, Liang D, Guo K, J. Chem. Eng. Data, 46, 930 (2001)
Trueba AT, Rovetto LJ, Florusse LJ, Kroon MC, Peters CJ, Fluid Phase Equilib., 307(1), 6 (2011)
Zhang J, Lee JW, J. Chem. Eng. Data, 54, 659 (2008)
Zhang J, Lee JW, Ind. Eng. Chem. Res., 48, 5934 (2008)
Mohammadi AH, Richon D, Chem. Eng. Sci., 64(24), 5319 (2009)
Lim YA, Babu P, Kumar R, Linga P, Crystal Growth & Design, 13, 2047 (2013)
Shimada W, Ebinuma T, Oyama H, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., 42, 129 (2003)
Kamata Y, Oyama H, Shimada W, Ebinuma T, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., 43, 362 (2004)
Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA, J. Phys. Chem. A, 113(23), 6415 (2009)
Acosta HY, Bishnoi PR, Clarke MA, J. Chem. Eng. Data, 56, 69 (2010)
Lee S, Lee Y, Park S, Seo Y, J. Chem. Eng. Data, 55(12), 5883 (2010)
Chapoy A, Gholinezhad J, Tohidi B, J. Chem. Eng. Data, 55(11), 5323 (2010)
Li G, Liu D, Xie Y, J. Therm. Anal. Calorim., 102, 819 (2010)
Oshima M, Shimada W, Hashimoto S, Tani A, Ohgaki K, Chem. Eng. Sci., 65(20), 5442 (2010)
Rodionova T, Komarov V, Villevald G, Aladko L, Karpova T, Manakov A, J. Phys. Chem. B, 114(36), 11838 (2010)
Deschamps J, Dalmazzone D, J. Chem. Eng. Data, 55(9), 3395 (2010)
Li SF, Fan SS, Wang JQ, Lang XM, Wang YH, J. Chem. Eng. Data, 55(9), 3212 (2010)
Sun ZG, Sun L, J. Chem. Eng. Data, 55(9), 3538 (2010)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 35(9), 3902 (2010)
Li XS, Xia ZM, Chen ZY, Yan KF, Li G, Wu HJ, J. Chem. Eng. Data, 55, 2180 (2009)
Mayoufi N, Dalmazzone D, Furst W, Delahaye A, Fournaison L, J. Chem. Eng. Data, 55, 1271 (2009)
Makino T, Yamamoto T, Nagata K, Sakamoto H, Hashimoto S, Sugahara T, Ohgaki K, J. Chem. Eng. Data, 55, 839 (2009)
Deschamps J, Dalmazzone D, J. Therm. Anal. Calorim., 98, 113 (2009)
Fan SS, Li SF, Wang JQ, Lang XM, Wang YH, Energy Fuels, 23(8), 4202 (2009)
Lee BR, Sa JH, Park DH, Cho S, Lee J, Kim HJ, Oh E, Jeon S, Lee JD, Lee KH, Energy Fuels, 26, 767 (2011)
Sa JH, Kwak GH, Lee BR, Park DH, Han K, Lee KH, Scientific Reports, 3 (2013)
Seo YT, Lee H, J. Phys. Chem. B, 108(2), 530 (2004)
Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED, Science, 306, 469 (2004)
Alavi S, Susilo R, Ripmeester JA, J. Chem. Phys., 130, 174501 (2009)
Van Cleeff A, Diepen G, Recueil des Travaux Chimiques des Pays-Bas, 84, 1085 (1965)
Adisasmito S, Frank III RJ, Sloan Jr ED, J. Chem. Eng. Data, 36, 68 (1991)
Association, W. S., “World Steel in Figures 2008. Brussels: World steel association,” (2008)
http://www.gir.go.kr/og/hm/ic/g/OGHMICG010M.do?year=2012&headerValue=04&leftValue=02.
http://www.ieagreen.org.uk/sr2p.htm.
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Lee BR, Ryu JH, Han K, Park DH, Lee KH, Lee IB, Korean Chem. Eng. Res., 48(2), 232 (2010)
Sloan Jr ED, Koh C, Clathrate Hydrates of Natural Gases, CRC press (2007)
Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189(1-2), 99 (2001)
Saito Y, Kawasaki T, Kondo T, Hiraoka R, “Methane Storage in Hydrate Phase with Water Soluble Guests,” Proceeding of the Second International Conference on Gas Hydrate, Toulouse, France, pp. 459-465 (1996)
Maekawa T, Fluid Phase Equilib., 303(1), 76 (2011)
Seo Y, Kang SP, Lee S, Lee H, J. Chem. Eng. Data, 53(12), 2833 (2008)
Mohammadi AH, Martinez-Lopez JF, Richon D, Chem. Eng. Sci., 65(22), 6059 (2010)
Strobel TA, Koh CA, Sloan ED, Fluid Phase Equilib., 280(1-2), 61 (2009)
Yoon JH, Korean J. Chem. Eng., 29(12), 1670 (2012)
Fan S, Liang D, Guo K, J. Chem. Eng. Data, 46, 930 (2001)
Trueba AT, Rovetto LJ, Florusse LJ, Kroon MC, Peters CJ, Fluid Phase Equilib., 307(1), 6 (2011)
Zhang J, Lee JW, J. Chem. Eng. Data, 54, 659 (2008)
Zhang J, Lee JW, Ind. Eng. Chem. Res., 48, 5934 (2008)
Mohammadi AH, Richon D, Chem. Eng. Sci., 64(24), 5319 (2009)
Lim YA, Babu P, Kumar R, Linga P, Crystal Growth & Design, 13, 2047 (2013)
Shimada W, Ebinuma T, Oyama H, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., 42, 129 (2003)
Kamata Y, Oyama H, Shimada W, Ebinuma T, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., 43, 362 (2004)
Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA, J. Phys. Chem. A, 113(23), 6415 (2009)
Acosta HY, Bishnoi PR, Clarke MA, J. Chem. Eng. Data, 56, 69 (2010)
Lee S, Lee Y, Park S, Seo Y, J. Chem. Eng. Data, 55(12), 5883 (2010)
Chapoy A, Gholinezhad J, Tohidi B, J. Chem. Eng. Data, 55(11), 5323 (2010)
Li G, Liu D, Xie Y, J. Therm. Anal. Calorim., 102, 819 (2010)
Oshima M, Shimada W, Hashimoto S, Tani A, Ohgaki K, Chem. Eng. Sci., 65(20), 5442 (2010)
Rodionova T, Komarov V, Villevald G, Aladko L, Karpova T, Manakov A, J. Phys. Chem. B, 114(36), 11838 (2010)
Deschamps J, Dalmazzone D, J. Chem. Eng. Data, 55(9), 3395 (2010)
Li SF, Fan SS, Wang JQ, Lang XM, Wang YH, J. Chem. Eng. Data, 55(9), 3212 (2010)
Sun ZG, Sun L, J. Chem. Eng. Data, 55(9), 3538 (2010)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 35(9), 3902 (2010)
Li XS, Xia ZM, Chen ZY, Yan KF, Li G, Wu HJ, J. Chem. Eng. Data, 55, 2180 (2009)
Mayoufi N, Dalmazzone D, Furst W, Delahaye A, Fournaison L, J. Chem. Eng. Data, 55, 1271 (2009)
Makino T, Yamamoto T, Nagata K, Sakamoto H, Hashimoto S, Sugahara T, Ohgaki K, J. Chem. Eng. Data, 55, 839 (2009)
Deschamps J, Dalmazzone D, J. Therm. Anal. Calorim., 98, 113 (2009)
Fan SS, Li SF, Wang JQ, Lang XM, Wang YH, Energy Fuels, 23(8), 4202 (2009)
Lee BR, Sa JH, Park DH, Cho S, Lee J, Kim HJ, Oh E, Jeon S, Lee JD, Lee KH, Energy Fuels, 26, 767 (2011)
Sa JH, Kwak GH, Lee BR, Park DH, Han K, Lee KH, Scientific Reports, 3 (2013)
Seo YT, Lee H, J. Phys. Chem. B, 108(2), 530 (2004)
Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED, Science, 306, 469 (2004)
Alavi S, Susilo R, Ripmeester JA, J. Chem. Phys., 130, 174501 (2009)
Van Cleeff A, Diepen G, Recueil des Travaux Chimiques des Pays-Bas, 84, 1085 (1965)
Adisasmito S, Frank III RJ, Sloan Jr ED, J. Chem. Eng. Data, 36, 68 (1991)