ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 27, 2014
Accepted December 9, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge

공주대학교 화학공학부, 330-717 충남 천안시 서북구 천안대로 1223-24
Department of Chemical Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan, Chungnam 330-717, Korea
jkjeon@kongju.ac.kr
Korean Chemical Engineering Research, February 2015, 53(1), 121-126(6), 10.9713/kcer.2015.53.1.121 Epub 3 February 2015
downloadDownload PDF

Abstract

본 연구의 목적은 정수 슬러지로부터 제조된 다공성 물질의 촉매 기능을 평가하기 위한 것이다. 촉매의 구조적 특성은 질소 흡착-탈착 등온선, 주사 전자 현미경 및 X선 회절을 이용하여 조사하였다. 정수 슬러지로부터 제조된 촉매는 메조 기공과 미세 기공을 동시에 보유하고 있으며, 촉매의 비표면적은 157 m2/g이다. 촉매의 산특성은 암모니아 승온탈착법과 피리딘 흡착 적외선 분광법으로 분석하였다. 고정층 촉매 반응기에서 2-부탄올의 탈수 반응을 수행한 결과, 350 oC의 반응 온도에서 1-부텐, 트랜스-2-부텐 및 시스-2-부텐의 수율은 각각 25.6 wt%, 19.2 wt% 및 29.9 wt%이었다. 정수 슬러지로부터 제조된 촉매의 2-부탄올 탈수 반응 활성은 브뢴스테드 산점와 루이스 산점으로 이루어진 산점을 보유한 것에 기인한다. 부탄올의 탈수 반응에 의해 C4 올레핀을 제조하는 반응에서 정수 슬러지로부터 제조된 촉매의 활용 가능성을 확인하였다.
The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using N2 adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is 157 m2/g. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at 350 oC were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce C4 olefin through butanol dehydration.

References

Lee JK, Beak SG, Kim ZC, Lee JI, Pyo BS, J. KOWREC, 8(1), 103 (2000)
Koo JK, Lim JS, Moon YT, Lee IB, J. KOWREC, 7, 1 (1999)
Kim JM, Kim MK, Lee JM, Lee CH, Lee SW, Choi DJ, La JM, “Method of Manufacturing a Building Material Composition Eco-friendly,” Korea Patent No. 10-1041094 (2011)
Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173 (2011)
Hwang HU, Kim JH, Kim YJ, J. Kor. Soc. Environ. Eng., 31(3), 217 (2009)
Seredych M, Strydom C, Bandosz TJ, Waste Manage., 28, 1983 (2008)
Yuan WX, Bandosz TJ, Fuel, 86(17-18), 2736 (2007)
Hwang HU, Kim JH, Kim YJ, J. Kor. Soc. Environ. Eng., 3, 217 (2009)
Jeong S, Kim H, Bae JH, Kim DH, Peden CHF, Park YK, Jeon JK, Catal. Today, 185(1), 191 (2012)
Ko MS, Jeon JK, Cho J, Lee SJ, Lee JH, Korean Chem. Eng. Res., 46(4), 692 (2008)
Macht J, Baertsch CD, May-Lozano M, Soled SL, Wang Y, Iglesia E, J. Catal., 227(2), 479 (2004)
Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF, Macht J, Iglesia E, J. Catal., 239(1), 200 (2006)
Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF, Top. Catal., 49, 259 (2008)
West RM, Braden DJ, Dumesic JA, J. Catal., 262(1), 134 (2009)
Macht J, Carr RT, Iglesia E, J. Catal., 264(1), 54 (2009)
Bedia J, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T, AIChE J., 56(6), 1557 (2010)
Zhang D, Al-Hajri R, Barri SA, Chadwick D, Chem. Commun., 46, 4088 (2010)
Bae J, Park N, Lee CH, Park YK, Jeon JK, Korean Chem. Eng. Res., 51(3), 352 (2013)
Park N, Bae J, Lee CH, Jeon JK, Clean Technol., 19(2), 121 (2013)
Choi HH, Bae JH, Kim DH, Park YK, Jeon JK, Materials, 6, 1718 (2013)
Choi HH, Lee EO, Jin MS, Park YK, Kim JM, Jeon JK, J. Nanosci. Nanotechnol., 14, 8828 (2014)
Kim HJ, Jeong SY, Kim DH, Park YK, Jeon JK, J. Nanosci. Nanotechnol., 12, 6074 (2012)
Rouquerol J, Avnir D, Fairbridge CW, Everet DH, Haynes JH, Pure Appl. Chem., 66, 1739 (1994)
Yun SY, Lee EO, Park YK, Jeong SY, Han JS, Jeong BH, Jeon JK, Res. Chem. Intermed., 37, 1215 (2011)
Yurdakoc M, Akcay M, Tonbul Y, Yurdakoc K, Turk. J. Chem., 23(3), 319 (1999)
Palomino GT, Pascual JJC, Delgado MR, Parra JB, Arean CO, Mater. Chem. Phys., 85(1), 145 (2004)
Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L, Colloids Surf. A: Physicochem. Eng. Asp., 190, 261 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로