Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 30, 2014
Accepted August 19, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
중공사막을 이용하는 다성분 혼합물 분리공정의 모델링
Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane
한양대학교 화학공학과, 133-791 서울시 성동구 행당동 17 1한양대학교 에너지공학과, 133-791 서울시 성동구 행당동 17
Department of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea 1WCU Department of Energy, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Korean Chemical Engineering Research, February 2015, 53(1), 22-30(9), 10.9713/kcer.2015.53.1.22 Epub 3 February 2015
Download PDF
Abstract
지금까지의 분리막 공정 모델링에 대한 연구는 주로 2성분계 원료의 분리공정에 집중되어 왔다. 실제 운전에 있어서는 2성분계 혼합물은 매우 드물며 다성분계 혼합물이 대부분이므로 막분리 공정의 설계를 위해서는 다성분계 막분리 공정에 대한 모델개발이 필수적이다. 본 연구에서는 중공사막을 이용하는 분리막 공정에서 다성분 혼합물 원료에 대한 분리공정 모델링을 수행하였다. 다양한 형태의 다성분 공정모델을 구현하였으며 실험결과를 이용하여 모델의 정확도 및 신뢰도를 조사하였다. 개발된 모델들은 원료 흐름의 유입조건과 다양한 운전조건에 대하여 안정적이고 실험데이터에 근접한 모사결과를 보여 주었다.
So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.
References
Weller S Steiner, WA, J. Appl. Phys, 21, 279 (1950)
Weller S Steiner, WA, Chem. Eng. Prog, 46, 585 (1950)
Blaisdell CT, Kammermeyer K, Chem. Eng. Sci, 28, 1249 (1973)
Stern SA, Wang SC, J. Membr. Sci., 4, 141 (1978)
Rautenbach R, Dahm W, J. Membr. Sci., 28, 319 (1986)
Krovvidi KR, Kovvali AS, Vemury S, Khan AA, J. Membr. Sci., 66, 103 (1992)
Shindo Y, Hakuta T, Yoshitome H, Sep. Sci. Technol., 20, 445 (1985)
Shindo Y, Itoh N, Haraya K, Sep. Sci. Technol., 24, 599 (1989)
Li K, Acharya DR, Hughes R, J. Membr. Sci., 52, 205 (1990)
McCandless FP, J. Membr. Sci., 48, 115 (1990)
Kovvali AS, Vemury S, Krovvidi KR, Khan AA, J. Membr. Sci., 73, 1 (1992)
Kovvali AS, Vemury S, Admassu W, Ind. Eng. Chem. Res., 33(4), 896 (1994)
Chen H, Jiang GL, Xu RX, J. Membr. Sci., 95(1), 11 (1994)
Davis RA, Sep. Sci. Technol., 40(15), 3017 (2005)
Coker DT, Freeman BD, AIChE J., 44, 6 (1998)
Katoh T, Tokumura M, Yoshikawa H, Kawase Y, Sep. Purif. Technol., 76(3), 362 (2011)
Qi RH, Henson MA, Comput. Chem. Eng., 24(12), 2719 (2000)
Kaldis SP, Kapantaidakis GC, Sakellaropoulos GP, J. Membr. Sci., 173(1), 61 (2000)
Swartz JR, AIChE J., 58(1), 5 (2012)
Hussain A, Hagg MB, J. Membr. Sci., 359(1-2), 140 (2010)
Choi JH, Youn PS, Kim KC, Yi CK, Jo SH, Ryu HJ, Park YC, Korean Chem. Eng. Res., 50(3), 516 (2012)
Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, et al., Science, 318, 254 (2007)
Jung HJ, Han SH, Lee YM, Yeo YK, Korean J. Chem. Eng., 28(7), 1497 (2011)
Weller S Steiner, WA, Chem. Eng. Prog, 46, 585 (1950)
Blaisdell CT, Kammermeyer K, Chem. Eng. Sci, 28, 1249 (1973)
Stern SA, Wang SC, J. Membr. Sci., 4, 141 (1978)
Rautenbach R, Dahm W, J. Membr. Sci., 28, 319 (1986)
Krovvidi KR, Kovvali AS, Vemury S, Khan AA, J. Membr. Sci., 66, 103 (1992)
Shindo Y, Hakuta T, Yoshitome H, Sep. Sci. Technol., 20, 445 (1985)
Shindo Y, Itoh N, Haraya K, Sep. Sci. Technol., 24, 599 (1989)
Li K, Acharya DR, Hughes R, J. Membr. Sci., 52, 205 (1990)
McCandless FP, J. Membr. Sci., 48, 115 (1990)
Kovvali AS, Vemury S, Krovvidi KR, Khan AA, J. Membr. Sci., 73, 1 (1992)
Kovvali AS, Vemury S, Admassu W, Ind. Eng. Chem. Res., 33(4), 896 (1994)
Chen H, Jiang GL, Xu RX, J. Membr. Sci., 95(1), 11 (1994)
Davis RA, Sep. Sci. Technol., 40(15), 3017 (2005)
Coker DT, Freeman BD, AIChE J., 44, 6 (1998)
Katoh T, Tokumura M, Yoshikawa H, Kawase Y, Sep. Purif. Technol., 76(3), 362 (2011)
Qi RH, Henson MA, Comput. Chem. Eng., 24(12), 2719 (2000)
Kaldis SP, Kapantaidakis GC, Sakellaropoulos GP, J. Membr. Sci., 173(1), 61 (2000)
Swartz JR, AIChE J., 58(1), 5 (2012)
Hussain A, Hagg MB, J. Membr. Sci., 359(1-2), 140 (2010)
Choi JH, Youn PS, Kim KC, Yi CK, Jo SH, Ryu HJ, Park YC, Korean Chem. Eng. Res., 50(3), 516 (2012)
Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, et al., Science, 318, 254 (2007)
Jung HJ, Han SH, Lee YM, Yeo YK, Korean J. Chem. Eng., 28(7), 1497 (2011)