Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 13, 2014
Accepted July 16, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조
Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles
1한국지질자원연구원 희유자원활용연구실, 305-350 대전광역시 유성구 과학로 124 2과학기술연합대학원대학교 나노재료공학전공, 305-350 대전광역시 유성구 가정로 217
1Rare Metals Research Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-ro, Yuseong-gu, Daejeon 305-350, Korea 2Nanomaterials Science and Engineering, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Korea
hdjang@kigam.re.kr
Korean Chemical Engineering Research, February 2015, 53(1), 78-82(5), 10.9713/kcer.2015.53.1.78 Epub 3 February 2015
Download PDF
Abstract
유기주형(organic template) 입자를 이용하여 소디움실리케이트(sodium silicate)로부터 중공형 실리카(hollow silica) 입자를 제조하였다. 유기주형 입자로는 스티렌 단량체(styrene monomer)로부터 분산중합(dispersion polymerization)에 의해 제조된 폴리스티렌 라텍스(polystyrene latex, PSL) 입자를 사용하였다. 유기주형 입자 제조 시 중합개시제인 2,2'-azobisisobutyronitrile(AIBN)의 주입량을 조절하여 1~3 μm의 크기를 가진 입자를 제조하였다. 생성된 유기주형 입자표면에 졸-겔(sol-gel)법에 의해 소디움실리케이트로부터 생성된 실리카(SiO2) 나노 입자를 코팅하여 PSL/SiO2 코어-쉘 형태의 입자를 제조하였다. 유기용매인 테트라하이드로푸란(tetrahydrofuran, THF)을 이용하여 코어-쉘 입자 내부의 유기주형을 제거 하였다. 코어-쉘 입자 제조 시 용매의 종류 및 pH의 변화에 따라 생성되는 중공형 실리카 입자의 형상을 조사하였다. PSL/SiO2 코어-쉘 입자 제조 시 용매를 에탄올에서 물로 변경했을 때 중공형 실리카 입자가 성공적으로 제조되었으며 낮은 pH 값을 갖는 용매에서 쉘 두께가 균일한 중공형 실리카 입자가 형성되었다. 중공형 실리카 입자의 반사도를 측정한 결과 상용 제품(Insuladd)보다 높은 반사 특성을 보여주었다.
Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from 1 μm to 3 μm in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/SiO2 core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates_x000D_
were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.
References
Feng Z, Li Y, Niu D, Li L, Zhao W, Chen H, Li L, Gao J, Ruan M, Shi J, Chem. Commun., 44, 2629 (2008)
Xu L, Du J, Deng Y, He N, J. Biomed Nanotechnol., 8, 1006 (2012)
He N, Deng Y, Xu L, Li Z, Li X, J. Biomed Nanotechnol., 10, 8463 (2010)
Hope EG, Sherrington J, Stuart AM, Adv. Synth. Catal., 348, 1635 (2006)
Miyao T, Minoshima K, Kurokawa Y, Shinohara K, Shen WH, Naito S, Catal. Today, 132(1-4), 132 (2008)
Lay CL, Liu HQ, Wu D, Liu Y, Chem. Eur. J., 16, 3001 (2010)
Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J, ACS Nano, 4, 6001 (2010)
Chen H, He J, Tang H, Yan C, Chem. Mater., 20, 5894 (2008)
Hughes GA, Nanomedicine: Nanotechnology, Biology and Medicine, 1, 22 (2005)
Chen H, He J, Tang H, Yan C, Chem. Mater., 20, 5894 (2008)
Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY, Acc. Chen. Res., 40, 846 (2007)
Yang J, Lee J, Kang J, Lee K, Suh JS, Yoon HG, Huh YM, Haam S, Langmuir, 24(7), 3417 (2008)
Lay Cl, Liu HQ, Wu D, Liu Y, Chem. Eur. J., 16, 3001 (2010)
Liu C, Ge C, Wang A, Yin H, Ren M, Zhang Y, Yu L, Jiang T, Korean J. Chem. Eng., 28(6), 1458 (2011)
Waston DR, Carithers VG, Drown HL, “Hollow Ceramic Balls as Automotive Catalysts Supports,” US Patent, 4, 039, 480 (1977)
Kawahashi N, Matijevic E, J. Colloid Interf. Sci., 143, 103 (1991)
Kentepozidou A, Kiparissides C, Kotzia F, Kollia C, Spyrellis N, J. Mat. Sci., 31, 1176 (1996)
Yang S, Shim SE, Lee H, Kim GP, Choe S, Macromol. Res., 12(5), 519 (2004)
Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 612 (2004)
Allen MS, Baumgartner RG, Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 619 (2004)
Kim JW, Lee JW, Choi JW, Jang HD, J. Nanosci. Nanotech., 13, 2284 (2013)
Kim J, Lee J, Chang H, Choi JW, Jang HD, J. Cryst. Growth, 373, 128 (2013)
Heish HL, Quirk RP, “Anionic Polymerization; Principles and Practices,” Academic, NewYork (1996)
Barrett KEJ, “Dispersion Polymerization in Organic Media,” Wiley, London (1975)
Almong Y, Reich S, Levy M, J. Brit, Polym. J., 14, 131 (1982)
Corner T, Colloids Surf., 3, 119 (1981)
Ober CK, Lok KP, Hari ML, J. Polym. Sci.: Polym. Lett. Ed., 23, 103 (1985)
Szwarc M, Levy M, Milkovich R, J. Am. Chem. Soc., 78, 2656 (1956)
Hawker CJ, Trends Polym. Sci., 4, 183 (1996)
Bao Y, Yang YQ, Ma JZ, J. Colloid Interface Sci., 407, 155 (2013)
Gabriel AO, Riedel R, Angew. Chem.-Int. Edit., 36, 384 (1997)
He F, Wang X, Wu D, Energy, 67, 6 (2014)
Iler RK, “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry,” Wiley, New York (1979)
Friedlander SK, “Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics,” Oxford University Press (2000)
Xu L, Du J, Deng Y, He N, J. Biomed Nanotechnol., 8, 1006 (2012)
He N, Deng Y, Xu L, Li Z, Li X, J. Biomed Nanotechnol., 10, 8463 (2010)
Hope EG, Sherrington J, Stuart AM, Adv. Synth. Catal., 348, 1635 (2006)
Miyao T, Minoshima K, Kurokawa Y, Shinohara K, Shen WH, Naito S, Catal. Today, 132(1-4), 132 (2008)
Lay CL, Liu HQ, Wu D, Liu Y, Chem. Eur. J., 16, 3001 (2010)
Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J, ACS Nano, 4, 6001 (2010)
Chen H, He J, Tang H, Yan C, Chem. Mater., 20, 5894 (2008)
Hughes GA, Nanomedicine: Nanotechnology, Biology and Medicine, 1, 22 (2005)
Chen H, He J, Tang H, Yan C, Chem. Mater., 20, 5894 (2008)
Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY, Acc. Chen. Res., 40, 846 (2007)
Yang J, Lee J, Kang J, Lee K, Suh JS, Yoon HG, Huh YM, Haam S, Langmuir, 24(7), 3417 (2008)
Lay Cl, Liu HQ, Wu D, Liu Y, Chem. Eur. J., 16, 3001 (2010)
Liu C, Ge C, Wang A, Yin H, Ren M, Zhang Y, Yu L, Jiang T, Korean J. Chem. Eng., 28(6), 1458 (2011)
Waston DR, Carithers VG, Drown HL, “Hollow Ceramic Balls as Automotive Catalysts Supports,” US Patent, 4, 039, 480 (1977)
Kawahashi N, Matijevic E, J. Colloid Interf. Sci., 143, 103 (1991)
Kentepozidou A, Kiparissides C, Kotzia F, Kollia C, Spyrellis N, J. Mat. Sci., 31, 1176 (1996)
Yang S, Shim SE, Lee H, Kim GP, Choe S, Macromol. Res., 12(5), 519 (2004)
Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 612 (2004)
Allen MS, Baumgartner RG, Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 619 (2004)
Kim JW, Lee JW, Choi JW, Jang HD, J. Nanosci. Nanotech., 13, 2284 (2013)
Kim J, Lee J, Chang H, Choi JW, Jang HD, J. Cryst. Growth, 373, 128 (2013)
Heish HL, Quirk RP, “Anionic Polymerization; Principles and Practices,” Academic, NewYork (1996)
Barrett KEJ, “Dispersion Polymerization in Organic Media,” Wiley, London (1975)
Almong Y, Reich S, Levy M, J. Brit, Polym. J., 14, 131 (1982)
Corner T, Colloids Surf., 3, 119 (1981)
Ober CK, Lok KP, Hari ML, J. Polym. Sci.: Polym. Lett. Ed., 23, 103 (1985)
Szwarc M, Levy M, Milkovich R, J. Am. Chem. Soc., 78, 2656 (1956)
Hawker CJ, Trends Polym. Sci., 4, 183 (1996)
Bao Y, Yang YQ, Ma JZ, J. Colloid Interface Sci., 407, 155 (2013)
Gabriel AO, Riedel R, Angew. Chem.-Int. Edit., 36, 384 (1997)
He F, Wang X, Wu D, Energy, 67, 6 (2014)
Iler RK, “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry,” Wiley, New York (1979)
Friedlander SK, “Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics,” Oxford University Press (2000)