Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 9, 2014
Accepted July 29, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Polycaprolactone, 디클로로메탄, 이산화탄소로 구성된 3성분계 고압 상거동 측정
High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems
서울대학교 화학생물공학부, 151-744 서울시 관악구 관악로 599 1서울과학기술대학교 화공생명공학과, 139-743 서울시 노원구 공릉로 232 2한국과학기술연구원 바이오소재연구센터, 136-791 서울시 성북구 화랑로 14길 5
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, 599 Gwanang-no, Gwanak-gu, Seoul 151-744, Korea 1Department of Chemical and Biological Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 139-743, Korea 2Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 136-791, Korea
Korean Chemical Engineering Research, April 2015, 53(2), 193-198(6), 10.9713/kcer.2015.53.2.193 Epub 30 March 2015
Download PDF
Abstract
Polycaprolactone, Dichloromethane, 이산화탄소로 구성된 3성분계 고압 시스템의 상거동 측정 실험은 가변 부피 셀 장치를 이용해서 측정했다. 실험의 온도범위는 313.15 K에서 353.15 K, 압력은 약 300 bar까지 측정했으며 실험결과는 Polycaprolactone의 질량 분율이 1.0%, 2.0%, 3.0%일 때 온도와 이산화탄소/Dichloromethane의 질량 분율로 정리했다. 또한 실험 결과는 hybrid 상태방정식 (Peng-Robinson 상태방정식과 SAFT 상태방정식의 혼합형태) 을 이용하여 열역학적으로 검증하였으며, 혼합규칙은 반데르 발스의 단일 유체 혼합규칙을 사용했다. 이 다성분계 시스템에서 이원 상호 작용 파라미터 등, 각종 파라미터는 심플렉스 알고리즘을 통해 최적화했다.
The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO2/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO2-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.
Keywords
References
Labet M, Thielemans W, Chem. Soc. Rev., 38, 3484 (2009)
Bhavsar M, Amiji M, AAPS Pharm-SciTech, 9, 288 (2008)
Subra P, Jestin P, Powder Technol., 103(1), 2 (1999)
McHugh MA, Krukonis VJ, Supercritical Fluid Extraction: Principles and Practice, 2nd ed., Butterworth-Heinemann (1994)
Langer E, Rassaerts H, Kleinschmidt P, Strack H, Cook R, Langer E, Rassaerts H, Kleinschmidt P, Strack H, Cook R, Beck U, Lipper KA, Torkelson TR, Loser E, Beutel KK, Mann T, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA (2000)
Shin HY, Wu JZ, Ind. Eng. Chem. Res., 49(16), 7678 (2010)
Bae W, Kwon SY, Byun HS, Kim HY, J. Supercrit. Fluids, 30(2), 127 (2004)
Kwon JM, Cho DW, Bae W, Kim H, J. Chem. Eng. Data, 56(8), 3463 (2011)
Shin J, Lee YW, Kim H, Bae W, J. Chem. Eng. Data, 51(5), 1571 (2006)
Gwon J, Cho DW, Kim SH, Shin HY, Kim H, J. Chem. Thermodyn., 55, 37 (2012)
Cho SH, Yoon SD, Byun HS, Korean J. Chem. Eng., 30(3), 739 (2013)
Yoon SD, Byun HS, Korean J. Chem. Eng., 31(3), 522 (2014)
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
Poling BE, Prausnitz JM, O’Connell JP, The properties of Gases and Liquids, 5th ed., McGraw-Hill Book Company (2000)
Haynes WM, Lide DR, CRC Handbook of Chemistry and Physics, 91st ed., CRC Press (2010)
Analytical Methods Committee, Analyst, 120, 2303 (1995)
Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)
Bhavsar M, Amiji M, AAPS Pharm-SciTech, 9, 288 (2008)
Subra P, Jestin P, Powder Technol., 103(1), 2 (1999)
McHugh MA, Krukonis VJ, Supercritical Fluid Extraction: Principles and Practice, 2nd ed., Butterworth-Heinemann (1994)
Langer E, Rassaerts H, Kleinschmidt P, Strack H, Cook R, Langer E, Rassaerts H, Kleinschmidt P, Strack H, Cook R, Beck U, Lipper KA, Torkelson TR, Loser E, Beutel KK, Mann T, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA (2000)
Shin HY, Wu JZ, Ind. Eng. Chem. Res., 49(16), 7678 (2010)
Bae W, Kwon SY, Byun HS, Kim HY, J. Supercrit. Fluids, 30(2), 127 (2004)
Kwon JM, Cho DW, Bae W, Kim H, J. Chem. Eng. Data, 56(8), 3463 (2011)
Shin J, Lee YW, Kim H, Bae W, J. Chem. Eng. Data, 51(5), 1571 (2006)
Gwon J, Cho DW, Kim SH, Shin HY, Kim H, J. Chem. Thermodyn., 55, 37 (2012)
Cho SH, Yoon SD, Byun HS, Korean J. Chem. Eng., 30(3), 739 (2013)
Yoon SD, Byun HS, Korean J. Chem. Eng., 31(3), 522 (2014)
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
Poling BE, Prausnitz JM, O’Connell JP, The properties of Gases and Liquids, 5th ed., McGraw-Hill Book Company (2000)
Haynes WM, Lide DR, CRC Handbook of Chemistry and Physics, 91st ed., CRC Press (2010)
Analytical Methods Committee, Analyst, 120, 2303 (1995)
Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)