Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 22, 2014
Accepted October 2, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
부분최소자승법과 인공신경망을 이용한 고분자전해질 연료전지 스택의 모델링
Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks
GS칼텍스 기술연구소, 305-380 대전광역시 유성구 엑스포로 359
R&D Center, GS Caltex Corp., 359 Expo-ro, Yuseong-gu, Daejeon 305-380, Korea
ishan1969@gscaltex.com
Korean Chemical Engineering Research, April 2015, 53(2), 236-242(7), 10.9713/kcer.2015.53.2.236 Epub 30 March 2015
Download PDF
Abstract
고분자전해질 연료전지 스택의 성능 및 주요 운전 변수를 예측하기 위해 부분최소자승법과 인공신경망의 두 가지 데이터 기반 모델링 기법을 제시한다. 30 kW급 고분자전해질 연료전지 스택 실험으로부터 확보한 데이터를 사용하여 부분최소자승 및 인공신경망 모델들을 구성한 후 각 모델의 예측 성능 및 계산 시간을 비교하였다. 모델의 복잡성을 줄이기 위해 부분최소자승법에 기초한 VIP(Variable Importance on PLS Projections) 선정기준을 모델링 절차에 포함하여, 초기 입력변수의 집합으로부터 모델링에 필요한 입력변수들을 선정하였다. 모델링 결과, 인공신경망이 스택의 평균 셀전압과 캐소드(cathode) 출구 온도를 예측하는데 있어서, 부분최소자승법 보다 우수한 성능을 보였다. 그러나 부분최소자승법 또한 입력변수와 출력변수 간에 선형적 상관관계만을 모델링 할 수 있음에도 불구하고 비교적 만족할 만한 예측성능을 나타냈다. 모델의 정확도와 계산속도의 요구조건에 따라 두 모델링 기법은 고분자전해질 연료전지의 설계 및 운전 분야의 성능 예측, 온라인 및 오프라인 최적화, 제어 및 이상 진단을 위해 적용될 수 있을 것으로 판단된다.
We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.
Keywords
References
Veziroglu A, Macario R, Int. J. Hydrog. Energy, 36(1), 25 (2011)
Wang CY, Chem. Rev., 104(10), 4727 (2004)
Ding Y, Bi XT, Wilkinson DP, Int. J. Hydrog. Energy, 39(1), 469 (2014)
Han IS, Lim J, Jeong J, Shin HK, Renew. Energy, 54, 180 (2013)
Chung HS, Ha TJ, Kim HW, Han CH, Korean Chem. Eng. Res., 46(5), 915 (2008)
Jeong J, Han IS, Shin HK, Trans. Korean Hydrogen & New Energy Soc., 24, 386 (2013)
Guo NN, Leu MC, Koylu UO, Int. J. Hydrog. Energy, 38(16), 6750 (2013)
Hou YP, Yang ZH, Wan G, Int. J. Hydrog. Energy, 35(20), 11154 (2010)
Zhao YH, Pistikopoulos E, J. Power Sources, 232, 270 (2013)
Khadom AA, Korean J. Chem. Eng., 30(12), 2197 (2013)
Saenrung A, Abtahi A, Zilouchian A, J. Power Sources, 172(2), 749 (2007)
Li X, Cao GY, Zhu XJ, Energy Conv. Manag., 47(7-8), 1032 (2006)
Zhong ZD, Zhu XJ, Cao GY, J. Power Sources, 160(1), 293 (2006)
Petrone R, Zheng Z, Hissel D, Pera MC, Pianese C, Sorrentino M, Becherif M, Yousfi-Steiner N, Int. J. Hydrog. Energy, 38(17), 7077 (2013)
Napoli G, Ferraro M, Sergi F, Brunaccini G, Antonucci V, Int. J. Hydrog. Energy, 38(26), 11628 (2013)
Hua JF, Li JQ, Ouyang MG, Lu LG, Xu LF, Int. J. Hydrog. Energy, 36(16), 9896 (2011)
Wold S, Sjostrom M, Eriksson L, Chemometrics Intell. Lab. Syst., 58, 109 (2001)
Han IS, Kim M, Lee CH, Cha W, Ham BK, Jeong JH, Lee H, Chung CB, Han C, Korean J. Chem. Eng., 20(6), 977 (2003)
Han IS, Han C, Chung CB, J. Appl. Polym. Sci., 95, 967 (2004)
Han IS, Han C, Ind. Eng. Chem. Res., 42(10), 2209 (2003)
Min KG, Han IS, Han C, J. Chem. Eng. Jpn., 35(7), 613 (2002)
Geladi P, Kowalski B, Anal. Chim. Acta, 185, 1 (1986)
Kalogirou SA, Renew. Sust. Energ. Rev., 5, 373 (2001)
Hagan MT, Demuth HB, Beale M, Neural Network Design, PWS Publishing, Boston, MA (1996)
Hornik K, Stinchcombe M, White H, Neural Networks, 2, 359 (1989)
Han IS, Jeong J, Kho BK, Choi CH, Yu S, Shin HK, Trans. Korean Hydrogen & New Energy Soc., 25, 271 (2014)
Han IS, Jeong J, Shin HK, Int. J. Hydrog. Energy, 38(27), 11996 (2013)
Andersen CM, Bro R, J. Chemometr., 24, 728 (2010)
Chong IG, Jun CH, Chemometrics Intell. Lab. Syst., 78, 103 (2005)
Wang CY, Chem. Rev., 104(10), 4727 (2004)
Ding Y, Bi XT, Wilkinson DP, Int. J. Hydrog. Energy, 39(1), 469 (2014)
Han IS, Lim J, Jeong J, Shin HK, Renew. Energy, 54, 180 (2013)
Chung HS, Ha TJ, Kim HW, Han CH, Korean Chem. Eng. Res., 46(5), 915 (2008)
Jeong J, Han IS, Shin HK, Trans. Korean Hydrogen & New Energy Soc., 24, 386 (2013)
Guo NN, Leu MC, Koylu UO, Int. J. Hydrog. Energy, 38(16), 6750 (2013)
Hou YP, Yang ZH, Wan G, Int. J. Hydrog. Energy, 35(20), 11154 (2010)
Zhao YH, Pistikopoulos E, J. Power Sources, 232, 270 (2013)
Khadom AA, Korean J. Chem. Eng., 30(12), 2197 (2013)
Saenrung A, Abtahi A, Zilouchian A, J. Power Sources, 172(2), 749 (2007)
Li X, Cao GY, Zhu XJ, Energy Conv. Manag., 47(7-8), 1032 (2006)
Zhong ZD, Zhu XJ, Cao GY, J. Power Sources, 160(1), 293 (2006)
Petrone R, Zheng Z, Hissel D, Pera MC, Pianese C, Sorrentino M, Becherif M, Yousfi-Steiner N, Int. J. Hydrog. Energy, 38(17), 7077 (2013)
Napoli G, Ferraro M, Sergi F, Brunaccini G, Antonucci V, Int. J. Hydrog. Energy, 38(26), 11628 (2013)
Hua JF, Li JQ, Ouyang MG, Lu LG, Xu LF, Int. J. Hydrog. Energy, 36(16), 9896 (2011)
Wold S, Sjostrom M, Eriksson L, Chemometrics Intell. Lab. Syst., 58, 109 (2001)
Han IS, Kim M, Lee CH, Cha W, Ham BK, Jeong JH, Lee H, Chung CB, Han C, Korean J. Chem. Eng., 20(6), 977 (2003)
Han IS, Han C, Chung CB, J. Appl. Polym. Sci., 95, 967 (2004)
Han IS, Han C, Ind. Eng. Chem. Res., 42(10), 2209 (2003)
Min KG, Han IS, Han C, J. Chem. Eng. Jpn., 35(7), 613 (2002)
Geladi P, Kowalski B, Anal. Chim. Acta, 185, 1 (1986)
Kalogirou SA, Renew. Sust. Energ. Rev., 5, 373 (2001)
Hagan MT, Demuth HB, Beale M, Neural Network Design, PWS Publishing, Boston, MA (1996)
Hornik K, Stinchcombe M, White H, Neural Networks, 2, 359 (1989)
Han IS, Jeong J, Kho BK, Choi CH, Yu S, Shin HK, Trans. Korean Hydrogen & New Energy Soc., 25, 271 (2014)
Han IS, Jeong J, Shin HK, Int. J. Hydrog. Energy, 38(27), 11996 (2013)
Andersen CM, Bro R, J. Chemometr., 24, 728 (2010)
Chong IG, Jun CH, Chemometrics Intell. Lab. Syst., 78, 103 (2005)