ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 8, 2015
Accepted February 12, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법

A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers

군산대학교 나노화학공학과, 573-701 전북 군산시 미룡동 대학로 558
Department of Nano & Chemical Engineering, 558 Daehak-ro, Miryong-dong, Kunsan, Jeonbuk 573-701, Korea
Korean Chemical Engineering Research, April 2015, 53(2), 262-268(7), 10.9713/kcer.2015.53.2.262 Epub 30 March 2015
downloadDownload PDF

Abstract

본 연구에서는 일반적인 귀금속 담지법과 담체 위에 형성한 고분자 전해질 다층 박막 내에 귀금속을 내포시키는 방법으로 촉매를 제조하고, 과산화수소 직접제조 반응에 적용하여 촉매의 제조 방법이 과산화수소 생산성 및 촉매 수명에 미치는 영향을 조사하였다. 촉매의 활성은 제조 방법에 상관없이 담체의 산세기에 크게 의존하였으며, 사용한 담체들 중 산세기가 가장 강한 HBEA(SAR=25)를 사용한 경우가 활성이 가장 우수하였다. 단순 귀금속 담지 촉매는 고분자 전해질 다층 박막을 도입한 촉매보다 과산화수소 생산성은 우수하였으나, 반응 중 활성 금속인 Pd의 용출로 인해 재사용 횟수가 증가할 때마다 활성이 급격히 감소하였다. 한편, 고분자 전해질 다층 박막의 도입은 산성 담체의 역할을 약화시켜 촉_x000D_ 매 활성은 감소하고 과산화수소 분해능은 증가하여 전체적으로 과산화수소의 생산성이 감소되는 결과를 가져왔다. 하지만, 5회에 걸친 재사용 동안에도 촉매 활성이 유지되었으며, 이러한 비약적인 촉매 수명의 향상은 담체 위에 고분자 전해질 다층 박막을 도입하는 것이 반응 중 활성 금속의 용출 억제 측면에서 매우 효과적이라는 것을 시사한다.
In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

References

Campos-Martin JM, Blanco-Brieva G, Fierro JLG, Angew. Chem. Int. Ed., 45, 6962 (2006)
Samanta C, Appl. Catal. A: Gen., 350(2), 133 (2008)
Dittmeyera R, Grunwaldt JD, Pashkova A, Catal. Today, http://dx.doi.org/10.1016/ j.cattod. 2014.03.055. (2014)
Voloshin Y, Lawal A, Appl. Cat. A: Gen., 353, 9 (2006)
Edwards JK, Solsona B, Ntainjua EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Science, 323, 1037 (2009)
Park S, Lee J, Song JH, Kim TJ, Chung YM, Oh SH, Song IK, J. Mol. Catal. A-Chem., 363, 230 (2012)
Park S, Lee SH, Song SH, Park DR, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 10, 391 (2009)
Park S, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, J. Mol. Catal. A-Chem., 319(1-2), 98 (2010)
Park S, Kim TJ, Chung YM, Oh SH, Song IK, Korean J. Chem. Eng., 28(6), 1359 (2011)
Chung YM, Kwon YT, Kim TJ, Oh SH, Lee CS, Chem. Commun., 47, 5705 (2011)
Kim J, Chung YM, Kang SM, Choi CH, Kim BY, Kwon YT, Kim TJ, Oh SH, Lee CS, ACS Catal., 2, 1042 (2012)
Decher G, Science, 277(5330), 1232 (1997)
Messina R, Holm C, Kremer K, Langmuir, 19(10), 4473 (2003)
Shia X, Shen M, Mohwald H, Prog. Polym. Sci., 29, 987 (2004)
Schrinner M, Proch S, Mei Y, Kempe R, Miyajima N, Ballauff M, Adv. Mater., 20(10), 1928 (2008)
Song HM, Park YM, Son YA, Lee CS, Korean Chem. Eng. Res., 46(1), 184 (2008)
Chia K, Cohen RE, Rubner MF, Chem. Mater., 20(21), 6756 (2008)
Kidambi S, Dai JH, Li J, Bruening ML, J. Am. Chem. Soc., 126(9), 2658 (2004)
Schuetz P, Caruso F, Chem. Mater., 16(16), 3066 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로