ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 31, 2014
Accepted October 13, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells

Department of Chemical Engineering, Hanyang University, University,222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
Korean Chemical Engineering Research, June 2015, 53(3), 350-356(7), 10.9713/kcer.2015.53.3.350 Epub 2 June 2015
downloadDownload PDF

Abstract

The effects of the zinc oxide (ZnO) preparing process on the performance of inverted organic photovoltaic cells (OPVs) were explored. The morphology and size of ZnO nanoparticles were controlled, leading to more efficient charge collection from device and higher electron mobility compared with nanospheres. Nanosized ZnO particles were synthesized by using zinc acetate dihydrate and potassium hydroxide in methanol. Also, water was added into the reaction medium to control the morphology of ZnO nanocrystals from spherical particles to rods, and NH4OH was used to prevent the gelation of dispersion. Solution-processed ZnO thin films were deposited onto the ITO/glass substrate by using spin coating process and then ZnO films were used as an electron transport layer in inverted organic photovoltaic cells. The analyses were carried out by using TEM, FE-SEM, AFM, DLS, UV-Vis spectroscopy, current density-voltage characteristics and solar simulator.

References

Tan S, Chen B, Sun X, Fan W, Kwok H, Zhang X, Chua S, J. Appl. Phys., 98, 013505 (2005)
Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T, Prog. Mater. Sci., 50(3), 293 (2005)
Kim H, Jo Y, Lee K, Lee I, Tak Y, Korean Chem. Eng. Res., 50(1), 162 (2012)
Fortunato EMC, Barquinha PMC, Pimentel ACMBG, Goncalves AMF, Marques AJS, Pereira LMN, Martins RFP, Adv. Mater., 17(5), 590 (2005)
Bong H, Lee WH, Lee DY, Kim BJ, Cho JH, Cho K, Appl. Phys. Lett., 96, 192115 (2010)
Cetinorgu E, Goldsmith S, J. Phys. D-Appl. Phys., 40, 5220 (2007)
Nair S, Sasidharan A, Rani VD, Menon D, Nair S, Manzoor K, Raina S, J. Mater. Sci. Mater., 20, 235 (2009)
Gorla C, Emanetoglu N, Liang S, Mayo W, Lu Y, Wraback M, Shen H, J. Appl. Phys., 85, 2595 (1999)
Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J, J. Phys. Chem. B, 110(15), 7635 (2006)
Krebs FC, Thomann Y, Thomann R, Andreasen JW, Nanotechnology, 19, 424013 (2008)
Boucle J, Snaith HJ, Greenham NC, J. Phys. Chem. C, 114, 3664 (2010)
Chang PC, Fan Z, Wang D, Tseng WY, Chiou WA, Hong J, Lu JG, Chem. Mater., 16, 5133 (2004)
Kong XY, Ding Y, Yang R, Wang ZL, Science, 303, 1348 (2004)
Yang J, Lin Y, Meng Y, Korean J. Chem. Eng., 30(11), 2026 (2013)
Ni YH, Wei XW, Hong JM, Ye Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 121, 42 (2005)
Spanhel L, Anderson MA, J. Am. Chem. Soc., 113, 2826 (1991)
Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
Marotti RE, Guerra DN, Bello C, Machado G, Dalchiele EA, Sol. Energy Mater. Sol. Cells, 82(1-2), 85 (2004)
Saad L, Riad M, J. Serb. Chem. Soc., 73 (2008)
Rodriguez JA, Jirsak T, Dvorak J, Sambasivan S, Fischer D, J. Phys. Chem. B, 104(2), 319 (2000)
Liu X, Wu X, Cao H, Chang R, J. Appl. Phys., 95, 3141 (2004)
Beek WJE, Wienk MM, Kemerink M, Yang XN, Janssen RAJ, J. Phys. Chem. B, 109(19), 9505 (2005)
Li CY, Wen TC, Lee TH, Guo TF, Lin YC, Hsu YJ, J. Mater. Chem., 19, 1643 (2009)
Sun B, Sirringhaus H, Nano Lett., 5, 2408 (2005)
Bacsa R, Kihn Y, Verelst M, Dexpert J, Bacsa W, Serp P, Surf. Coat. Technol., 201, 9200 (2007)
Livage J, Henry M, Sanchez C, Prog. Solid State Chem., 18, 259 (1988)
Bu IYY, Appl. Surf. Sci., 257(14), 6107 (2011)
Sekine N, Chou CH, Kwan WL, Yang Y, Organic Electronics, 10, 1473 (2009)
Yin Z, Zheng Q, Chen SC, Cai D, ACS Appl. Mater. Interf., 5, 9015 (2013)
Olson DC, Lee YJ, White MS, Kopidakis N, Shaheen SE, Ginley DS, Voigt JA, Hsu JW, J. Phys. Chem. C, 111, 16640 (2007)
Baxter JB, Schmuttenmaer CA, J. Phys. Chem. B, 110(50), 25229 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로