Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 22, 2014
Accepted November 27, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교
An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion
홍익대학교 화학공학과, 121-791 서울시 마포구 와우산로 94
Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791, Korea
jiwon@hongik.ac.kr
Korean Chemical Engineering Research, August 2015, 53(4), 468-471(4), 10.9713/kcer.2015.53.4.468 Epub 29 July 2015
Download PDF
Abstract
본 연구에서는 빛의 조사기간을 변화시켜 세 종류의 미세조류(Nanochloris, Dunaliella tertiolecta, Tetraselmis)를 배양하고 이들의 성장속도 및 지질 함량을 분석하였다. 빛의 조사기간은 한국의 여름철과 겨울철의 일조시간을 반영해 각각 14.5시간과 7시간으로 설정하였다. 또한, 지질 추출 후 남은 미세조류를 당화시켜 포도당 전환율을 비교함으로써 미세조류의 바이오매스로써의 가능성을 가늠하고자 하였다. 실험 결과 D. tertiolecta가 다른 두 종의 미세조류보다 빛의 조사기간이 7시간일 때 최대 38% 높은 성장속도를 나타냈으며 지질함량은 최대 43.6% 정도 높은 결과를 보였다. 포도당으로의 당화 전환율도 D. tertiolecta가 최대 22% 높은 결과를 보였다.
Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.
Keywords
References
Minowa T, Yokoyama S, Kishimoto M, Okakura T, Fuel, 74(12), 1735 (1995)
Jo BH, Cha HJ, KSBB, 25, 109 (2010)
Meher L, Vidyasagar D, Naik S, Renew. Sust. Energ. Rev., 10(3), 248 (2006)
Marchetti JM, Miguel VU, Errazu AF, Renew. Sust. Energ. Rev., 11(6), 1300 (2007)
Canakci M, Bioresour. Technol., 98(1), 183 (2007)
Fukuda H, Kondo A, Noda H, J. Biosci. Bioeng., 92(5), 405 (2001)
Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14(1), 217 (2010)
Wahlen BD, Willis RM, Seefeldt LC, Bioresour. Technol., 102(3), 2724 (2011)
Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52 (2011)
Spolaore P, Joannis-Cassan C, Duran E, Isambert A, J. Biosci. Bioeng., 101(2), 87 (2006)
Kim DG, Choi YE, Korean Chem. Eng. Res., 52(1), 8 (2014)
John RP, Anisha GS, Nampoothiri KM, Pandey A, Bioresour. Technol., 102(1), 186 (2011)
Li X, Hu HY, Gan K, Sun YX, Bioresour. Technol., 101(14), 5494 (2010)
Yoo SJ, Oh SK, Lee JM, Korean Chem. Eng. Res., 51(1), 87 (2013)
Renaud SM, Thinh LV, Lambrinidis G, Parry DL, Aquaculture, 211, 195 (2002)
Sharma YC, Singh B, Upadhyay SN, Fuel, 87(12), 2355 (2008)
Demirbas A, Demirbas MF, Energy Conv. Manag., 52(1), 163 (2011)
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Selbert M, Darzins A, Plant J., 54, 621 (2008)
Jo BH, Cha HJ, KSBB, 25, 109 (2010)
Meher L, Vidyasagar D, Naik S, Renew. Sust. Energ. Rev., 10(3), 248 (2006)
Marchetti JM, Miguel VU, Errazu AF, Renew. Sust. Energ. Rev., 11(6), 1300 (2007)
Canakci M, Bioresour. Technol., 98(1), 183 (2007)
Fukuda H, Kondo A, Noda H, J. Biosci. Bioeng., 92(5), 405 (2001)
Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14(1), 217 (2010)
Wahlen BD, Willis RM, Seefeldt LC, Bioresour. Technol., 102(3), 2724 (2011)
Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52 (2011)
Spolaore P, Joannis-Cassan C, Duran E, Isambert A, J. Biosci. Bioeng., 101(2), 87 (2006)
Kim DG, Choi YE, Korean Chem. Eng. Res., 52(1), 8 (2014)
John RP, Anisha GS, Nampoothiri KM, Pandey A, Bioresour. Technol., 102(1), 186 (2011)
Li X, Hu HY, Gan K, Sun YX, Bioresour. Technol., 101(14), 5494 (2010)
Yoo SJ, Oh SK, Lee JM, Korean Chem. Eng. Res., 51(1), 87 (2013)
Renaud SM, Thinh LV, Lambrinidis G, Parry DL, Aquaculture, 211, 195 (2002)
Sharma YC, Singh B, Upadhyay SN, Fuel, 87(12), 2355 (2008)
Demirbas A, Demirbas MF, Energy Conv. Manag., 52(1), 163 (2011)
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Selbert M, Darzins A, Plant J., 54, 621 (2008)