Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 7, 2014
Accepted November 24, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승
Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode
충남대학교 화학공학과, 305-764 대전광역시 유성구 궁동 220 1한국원자력연구원 생명공학연구부, 전북 정읍시 신정동 1266
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266 Sinjeong-dong, Jeongeup-si, Jeonbuk 580-185, Korea
chroh@kaeri.re.kr
Korean Chemical Engineering Research, August 2015, 53(4), 472-477(6), 10.9713/kcer.2015.53.4.472 Epub 29 July 2015
Download PDF
Abstract
본 연구에서는 패러데이 모트를 사용한 기존의 피코리터 주입용 미세유체 칩에 은 나노입자를 이용한 전극을 추가하여 전압을 낮추며 효율을 높이는 실험을 수행하였다. 먼저, 복잡한 제조공정에서 탈피하여 은 나노입자 용액을 한 방울 떨어뜨리는 간단한 과정만으로 미세유체 피코리터 주입기 내에 전극을 제조하였다. 본 개념을 통한 은 나노입자 전극과 패러데이 모트가 통합된 미세유체 칩은 은 나노입자 전극을 사용하지 않는 기존 미세유체 칩의 피코리터 주입 시작 전압인 260 V 보다 낮은 전압인 180 V에서 피코리터 주입이 작동되었다. 또한 미세유체 피코리터 주입기는 피코리터 주입 부피를 7.5 pL부터 27.5 pL까지 정밀하게 조절할 수 있음을 주된 장점으로 하고 있다. 본 미세유체 피코리터 주입기는 미세유체 시스템의 새로운 기능을 설계함으로써 각 연구분야를 탐구할 유용한 플랫폼으로 기대되고 있다.
This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.
References
Whitesides GM, Nature, 442(7101), 368 (2006)
Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545 (2010)
Jeong HH, Lee SH, Lee CS, Biosens. Bioelectron., 47, 278 (2013)
Jang SC, Jeong HH, Lee CS, Korean Chem. Eng. Res., 50(4), 743 (2012)
Jeong HH, Lee SH, Kim JM, Kim HE, Kim YG, Yoo JY, Chang WS, Lee CS, Biosens. Bioelectron., 26(2), 351 (2010)
Kang SM, Choi CH, Hwang S, Jung JM, Lee CS, Korean Chem. Eng. Res., 50(4), 733 (2012)
Nam JO, Choi CH, Kim J, Kang SM, Lee CS, Korean Chem. Eng. Res., 51(5), 597 (2013)
Ko KY, Kim IH, Korean Chem. Eng. Res., 51(6), 760 (2013)
Song YS, Lee CS, Korean Chem. Eng. Res., 52(5), 632 (2014)
Jeong HH, Noh YM, Jang SC, Lee CS, Korean Chem. Eng. Res., 52(2), 141 (2014)
Jin SH, Kim J, Jang SC, Noh YM, Lee CS, Korean Chem. Eng. Res., 52(1), 106 (2014)
Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Page AP, Lo CC, Chain PS, Hallam SJ, Hansen CL, Proc. Natl. Acad. Sci. USA, 109(20), 7665 (2012)
Miller OJ, Harrak AE, Mangeat T, Baret JC, Frenz L, Debs BE, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD, Proc. Natl. Acad. Sci. USA, 109(2), 378 (2012)
Baroud CN, de Saint Vincent MR, Delville JP, Lab Chip, 7(8), 1029 (2007)
Niu X, Gulati S, Edel JB, deMello AJ, Lab Chip, 8(11), 1837 (2008)
Liu K, Ding H, Chen Y, Zhao XZ, Microfluid. Nanofluid., 3, 239 (2007)
Xu B, Nguyen N, Wong TN, Biomicrofluidics, 6, 012811 (2012)
Mazutis L, Baret JC, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD, Lab Chip, 9(20), 2902 (2009)
Zagnoni M, Le Lain G, Cooper JM, Langmuir, 26(18), 14443 (2010)
Ahn K, Agresti J, Appl. Phys. Lett., 88, 264105 (2006)
Mazutis L, Griffiths AD, Lab Chip, 12(10), 1800 (2012)
Niu X, Gielen F, Edel JB, deMello AJ, Nat. Chem., 3(6), 437 (2011)
Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA, Proc. Natl. Acad. Sci. USA, 107(45), 19163 (2010)
Sciambi A, Abate AR, Lab Chip, 14(15), 2605 (2014)
Khosla A, Interface, 21, 67 (2012)
Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA, Lab Chip, 8(10), 1632 (2008)
Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA, Angew. Chem.-Int. Edit., 45(16), 2556 (2006)
Sciambi A, Abate AR, Biomicrofluidics, 7, 044112 (2013)
Zhou JH, Ren KN, Zheng YZ, Su J, Zhao YH, Ryan D, Wu HK, Electrophoresis, 31(18), 3083 (2010)
O’Donovan B, Eastburn DJ, Abate AR, Lab Chip, 12(20), 4029 (2012)
Rhee M, Light YK, Yilmaz S, Adams PD, Saxena D, Meagher RJ, Singh AK, Lab Chip, 14(23), 4533 (2014)
Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545 (2010)
Jeong HH, Lee SH, Lee CS, Biosens. Bioelectron., 47, 278 (2013)
Jang SC, Jeong HH, Lee CS, Korean Chem. Eng. Res., 50(4), 743 (2012)
Jeong HH, Lee SH, Kim JM, Kim HE, Kim YG, Yoo JY, Chang WS, Lee CS, Biosens. Bioelectron., 26(2), 351 (2010)
Kang SM, Choi CH, Hwang S, Jung JM, Lee CS, Korean Chem. Eng. Res., 50(4), 733 (2012)
Nam JO, Choi CH, Kim J, Kang SM, Lee CS, Korean Chem. Eng. Res., 51(5), 597 (2013)
Ko KY, Kim IH, Korean Chem. Eng. Res., 51(6), 760 (2013)
Song YS, Lee CS, Korean Chem. Eng. Res., 52(5), 632 (2014)
Jeong HH, Noh YM, Jang SC, Lee CS, Korean Chem. Eng. Res., 52(2), 141 (2014)
Jin SH, Kim J, Jang SC, Noh YM, Lee CS, Korean Chem. Eng. Res., 52(1), 106 (2014)
Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Page AP, Lo CC, Chain PS, Hallam SJ, Hansen CL, Proc. Natl. Acad. Sci. USA, 109(20), 7665 (2012)
Miller OJ, Harrak AE, Mangeat T, Baret JC, Frenz L, Debs BE, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD, Proc. Natl. Acad. Sci. USA, 109(2), 378 (2012)
Baroud CN, de Saint Vincent MR, Delville JP, Lab Chip, 7(8), 1029 (2007)
Niu X, Gulati S, Edel JB, deMello AJ, Lab Chip, 8(11), 1837 (2008)
Liu K, Ding H, Chen Y, Zhao XZ, Microfluid. Nanofluid., 3, 239 (2007)
Xu B, Nguyen N, Wong TN, Biomicrofluidics, 6, 012811 (2012)
Mazutis L, Baret JC, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD, Lab Chip, 9(20), 2902 (2009)
Zagnoni M, Le Lain G, Cooper JM, Langmuir, 26(18), 14443 (2010)
Ahn K, Agresti J, Appl. Phys. Lett., 88, 264105 (2006)
Mazutis L, Griffiths AD, Lab Chip, 12(10), 1800 (2012)
Niu X, Gielen F, Edel JB, deMello AJ, Nat. Chem., 3(6), 437 (2011)
Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA, Proc. Natl. Acad. Sci. USA, 107(45), 19163 (2010)
Sciambi A, Abate AR, Lab Chip, 14(15), 2605 (2014)
Khosla A, Interface, 21, 67 (2012)
Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA, Lab Chip, 8(10), 1632 (2008)
Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA, Angew. Chem.-Int. Edit., 45(16), 2556 (2006)
Sciambi A, Abate AR, Biomicrofluidics, 7, 044112 (2013)
Zhou JH, Ren KN, Zheng YZ, Su J, Zhao YH, Ryan D, Wu HK, Electrophoresis, 31(18), 3083 (2010)
O’Donovan B, Eastburn DJ, Abate AR, Lab Chip, 12(20), 4029 (2012)
Rhee M, Light YK, Yilmaz S, Adams PD, Saxena D, Meagher RJ, Singh AK, Lab Chip, 14(23), 4533 (2014)