Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 16, 2014
Accepted November 24, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
중성 영역 구리 화학적 기계적 평탄화 공정에서의 작용기에 따른 부식방지제의 영향성 연구
Study on the Effects of Corrosion Inhibitor According to the Functional Groups for Cu Chemical Mechanical Polishing in Neutral Environment
서울대학교 화학생물공학부
School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 151-744 서울시 관악구 관악로 1, Korea
jjkimm@snu.ac.kr
Korean Chemical Engineering Research, August 2015, 53(4), 517-523(7), 10.9713/kcer.2015.53.4.517 Epub 29 July 2015
Download PDF
Abstract
금속 배선형성 재료가 구리로 대체됨에 따라 다마신(damascene) 공정이 도입되었고, 과증착된 구리를 화학적 기계적 평탄화(Chemical Mechanical Polishing, CMP) 방식을 통해 제거하는 구리 화학적 기계적 평탄화 공정이 필요하게 되었다. 본 연구에서는 중성영역 구리 화학적 기계적 평탄화 공정용 슬러리의 구성 요소 중 하나인 부식 방지제에 아미노기(-NH2)와 카르복실기(-COOH)를 부착시켜 그에 따른 영향성을 확인하고자 하였다. 1H-1,2,4-트리아졸(1H-1,2,4-triazole)을 기준 부식방지제로 선정하여 식각속도, 제거속도 및 화학적 식각력을 측정한 결과 아미노기는 높은 구리 식각 능력을 보여주는 반면, 카르복실기는 부식방지제 효과가 증대되어 기본 부식방지제보다 낮은 식각 능력을 보여주었다. 이는 높은 제거속도가 필요한 1차 구리 화학적 기계적 평탄화 공정에는 아미노기가, 높은 구리 제거속도/식각속도 비를 필요로 하는 2차 구리 화학적 기계적 평탄화 공정에는 카르복실기가 적합하다는 결론을 보여준다.
As the aluminum (Al) metallization process was replaced with copper (Cu), the damascene process was introduced, which required the planarization step to eliminate over-deposited Cu with Chemical Mechanical Polishing (CMP) process. In this study, the verification of the corrosion inhibitors, one of the Cu CMP slurry components, was conducted to find out the tendency regarding the carboxyl and amino functional group in neutral environment. Through the results of etch rate, removal rate, and chemical ability of corrosion inhibitors based on 1H-1,2,4-triazole as the basecorrosion inhibitor, while the amine functional group presents high Cu etching ability, carboxyl functional group shows lower Cu etching ability than base-corrosion inhibitor which means that it increases passivation effect by making strong passivation layer. It implies that the corrosion inhibitor with amine functional group was proper to apply for 1st Cu CMP slurry owing to the high etch rate and with carboxyl functional group was favorable for the 2nd Cu CMP slurry due to the high Cu removal rate/dissolution rate ratio.
Keywords
References
Allan A, Edenfeld D, Joyner WH, Kahng AB, Rogers M, Zorian Y, Computer, 35, 42 (2002)
Kim MJ, Kim JJ, Korean Chem. Eng. Res., 52(1), 26 (2014)
Steigerwald JM, Muraka SP, Gutmann RJ, Chemical Mechanical Planariation of Microelectric Materials, 1st ed., John Wiley & Sons, New York, NY(1997).
Tyagi S, Alavi M, Bigwood R, Bramblett T, Brandenburg J, Chen W, Crew B, Hussein M, Jacob P, Kenyon C, Lo C, Mcintyre B, Ma Z, Moon P, Nguyen P, Rumaner L, Schweinfurth R, Sivakumar S, Stettler M, Thompson S, Tufts B, Xu J, Yang S, Bohr M, “A 130 nm Generation Logic Technology Featuring 70 nm Transistors, Dual Vt Transistors and 6 layers of Cu Interconnects”, Electron Devices Meeting, December, San Francisco (2000).
Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H, IBM J. Res. Dev., 42, 567 (1998)
Andricacos PC, J. Electrochem. Soc. Interface, 8, 32 (1999)
Murarka SP, Mater. Sci. Eng. R-Rep., 19, 87 (1997)
Rosenberg R, Edelstein DC, Hu CK, Rodbell KP, Annu. Rev. Mater. Sci., 30, 229 (2000)
Theis TN, IBM J. Res. Dev., 44, 379 (2000)
Hu CK, Luther B, Kaufman FB, Hummel J, Uzoh C, Pearson DJ, Thin Solid Films, 262(1-2), 84 (1995)
Zantye PB, Kumar A, Sikder AK, Mater. Sci. Eng. R-Rep., 45, 89 (2004)
Kwon OJ, Cho SK, Kim JJ, Korean Chem. Eng. Res., 47(2), 141 (2009)
Aksu S, Doyle FM, J. Electrochem. Soc., 149(7), B340 (2002)
Gorantla VRK, Goia D, Matijevic E, Babu SV, J. Electrochem. Soc., 152(12), G912 (2005)
Lee JW, Kang MC, Kim JJ, J. Electrochem. Soc., 152(12), C827 (2005)
Walker R, Corrosion, 31, 97 (1975)
Mansfeld F, Smith T, Parry EP, Corrosion, 27, 289 (1971)
Notoya T, Poling GW, Corrosion, 35, 193 (1979)
Kester JJ, Furtak TE, Bevolo AJ, J. Electrochem. Soc., 129, 1716 (1982)
Nilsson JO, Tornkvist C, Liedberg B, Appl. Surf. Sci., 37, 306 (1989)
Bazzi L, Kertit S, Hamdani M, Corrosion, 51, 811 (1995)
Kwon OJ, Bae JH, Cho BK, Kim YJ, Kim JJ, Korean J. Chem. Eng., 28(7), 1619 (2011)
Sherif ESM, Erasmus RM, Comins JD, J. Colloid Interface Sci., 311(1), 144 (2007)
Trachli B, Keddam M, Takenouti H, Srhiri A, Corrosion Sci., 44, 997 (2002)
Pichon V, Hennion MC, Anal. Chim. Acta, 284, 317 (1993)
Li S, Zhou Z, Zhang Y, Liu M, Chem. Mater., 17, 5884 (2005)
Ogura K, Nakaoka K, Nakayama M, Tanaka S, J. Electroanal. Chem., 511(1-2), 122 (2001)
Kim MJ, Kim JJ, Korean Chem. Eng. Res., 52(1), 26 (2014)
Steigerwald JM, Muraka SP, Gutmann RJ, Chemical Mechanical Planariation of Microelectric Materials, 1st ed., John Wiley & Sons, New York, NY(1997).
Tyagi S, Alavi M, Bigwood R, Bramblett T, Brandenburg J, Chen W, Crew B, Hussein M, Jacob P, Kenyon C, Lo C, Mcintyre B, Ma Z, Moon P, Nguyen P, Rumaner L, Schweinfurth R, Sivakumar S, Stettler M, Thompson S, Tufts B, Xu J, Yang S, Bohr M, “A 130 nm Generation Logic Technology Featuring 70 nm Transistors, Dual Vt Transistors and 6 layers of Cu Interconnects”, Electron Devices Meeting, December, San Francisco (2000).
Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H, IBM J. Res. Dev., 42, 567 (1998)
Andricacos PC, J. Electrochem. Soc. Interface, 8, 32 (1999)
Murarka SP, Mater. Sci. Eng. R-Rep., 19, 87 (1997)
Rosenberg R, Edelstein DC, Hu CK, Rodbell KP, Annu. Rev. Mater. Sci., 30, 229 (2000)
Theis TN, IBM J. Res. Dev., 44, 379 (2000)
Hu CK, Luther B, Kaufman FB, Hummel J, Uzoh C, Pearson DJ, Thin Solid Films, 262(1-2), 84 (1995)
Zantye PB, Kumar A, Sikder AK, Mater. Sci. Eng. R-Rep., 45, 89 (2004)
Kwon OJ, Cho SK, Kim JJ, Korean Chem. Eng. Res., 47(2), 141 (2009)
Aksu S, Doyle FM, J. Electrochem. Soc., 149(7), B340 (2002)
Gorantla VRK, Goia D, Matijevic E, Babu SV, J. Electrochem. Soc., 152(12), G912 (2005)
Lee JW, Kang MC, Kim JJ, J. Electrochem. Soc., 152(12), C827 (2005)
Walker R, Corrosion, 31, 97 (1975)
Mansfeld F, Smith T, Parry EP, Corrosion, 27, 289 (1971)
Notoya T, Poling GW, Corrosion, 35, 193 (1979)
Kester JJ, Furtak TE, Bevolo AJ, J. Electrochem. Soc., 129, 1716 (1982)
Nilsson JO, Tornkvist C, Liedberg B, Appl. Surf. Sci., 37, 306 (1989)
Bazzi L, Kertit S, Hamdani M, Corrosion, 51, 811 (1995)
Kwon OJ, Bae JH, Cho BK, Kim YJ, Kim JJ, Korean J. Chem. Eng., 28(7), 1619 (2011)
Sherif ESM, Erasmus RM, Comins JD, J. Colloid Interface Sci., 311(1), 144 (2007)
Trachli B, Keddam M, Takenouti H, Srhiri A, Corrosion Sci., 44, 997 (2002)
Pichon V, Hennion MC, Anal. Chim. Acta, 284, 317 (1993)
Li S, Zhou Z, Zhang Y, Liu M, Chem. Mater., 17, 5884 (2005)
Ogura K, Nakaoka K, Nakayama M, Tanaka S, J. Electroanal. Chem., 511(1-2), 122 (2001)