ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 29, 2014
Accepted November 24, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

반응표면분석법을 통한 Enterobacteriaceae sp. PAMC 25617의 protease 생산배지 최적화

Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology

전남대학교 생물공학과 1극지연구소 극지생명과학연구부, 인천광역시 연수구 송도미래로 26
Department of Biotechnology and Bioengineering, Chonnam National University, 77, Yongbong-ro, Buk-gn, Gwangju 500-757, South Korea 1Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, South Korea
choiji01@chonnam.ac.kr
Korean Chemical Engineering Research, August 2015, 53(4), 524-529(6), 10.9713/kcer.2015.53.4.524 Epub 29 July 2015
downloadDownload PDF

Abstract

본 논문에서는 저온활성 protease의 생산을 최적화하기 위하여 극지 미생물인 Enterobacteriaceae sp. PAMC 25617의 반응표면분석법을 이용한 배지의 최적화를 수행하였다. One-factor-at-a-time 방법을 이용하여 yeast extract, TritonX-100이 protease의 생산에 영향을 미치는 주요인자인 것을 확인하였다. 물리적인 환경 요인으로 pH를 추가하여 반응표면분석 방법을 이용한 최대 protease 생산 농도를 갖는 각 인자들의 농도를 확인한 결과 5 g/L peptone, 3 g/L malt extract, 10 g/L C6H12O6, 6.690 g/L yeast extract, 0.018 g/L TritonX-100의 농도에 pH 6.777의 조건에서 미생물을 배양하였을 경우, 최대 10.049 U/L의 protease가 생산될 수 있는 것으로 예측되었다. 실제 배양 결과 8.03 U/L의 protease가 얻어졌으며, 최적화 이전의 생산농도와 비교하여 150% 이상의 증가를 이루었다. 결과적으로 배지최적화를 통한 protease 생산량의 증가에 반응표면분석법의 적용이 유용하다는 것을 확인할 수 있는다. 이러한 결과로부터, 배지 최적화를 이용한 극지미생물 유래 cold-adapted protease 생산량의 증가가 여러 산업 분야에서 유용하게 이용될 수 있을 것으로 생각된다.
This study was conducted to optimize the medium composition for cold-adaptive protease production of Enterobacteriaceae sp. by response surface methodology (RSM). Yeast extract, and TritonX-100 were identified as the significant factors affecting protease from one-factor-at-a-time method. RSM studies for optimizing protease production of Enterobacteriaceae sp. have been carried out for three parameters including yeast extract concentration, TritonX-100 concentration, and culture pH. These significant factors were optimized as 6.690 g/L yeast extract, 0.018 g/L Triton™ X-10, and pH 6.677. The experimentally obtained protease activity was 8.03 U /L, and it became 1.5-fold increase before optimization.

References

Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD, Curr. Opin. Biotechnol., 10, 240 (1999)
Antranikian G, Egorova K, “Extremophiles, a Unique Resource of Biocatalysts for Industrial Biotechnology,” Physiology and Biochemistry of Extremophiles. ASM Press. Washington, 361-406(2007).
Huston AL, “Biotechnological Aspects of Cold-adapted Enzymes,” In Psychrophiles: From Biodiversity to Biotechnology. Springer. Berlin. Heidelberg, 347-363(2008).
Kim DK, Park HJ, Lee YM, Hong SG, Lee HK, Yim JH, Korean J. Microbiol., 46, 73 (2010)
Zhu HY, Tian Y, Hou YH, Wang TH, Mol. Boil. rep., 36, 2169 (2009)
Georlette D, Blaise V, Collins T, D`Amico S, Gratia E, Hoyoux A, Marx J, Sonan G, Feller G, Gerday C, FEMS microbial. Rev., 28, 25 (2004)
Yang J, Li J, Mai ZM, Tian XP, Zhang S, J. Biosci. Bioeng., 115(6), 628 (2013)
Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D`Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G, Trends Biotechnol., 18, 103 (2000)
Dastager SG, Dayanand A, Li WJ, Kim CJ, Lee JC, Park DJ, Tian XP, Raziuddin QS, Curr. Microbiol., 57(6), 638 (2008)
Kirk O, Borchert TV, Fuglsang CC, Curr. Opin. Biotechnol., 13, 345 (2002)
Cherry JR, Fidantsef AL, Curr. Opin. Biotechnol., 14, 438 (2003)
Daniel RM, Toogood HS, Bergquist PL, Biotech. Genet. Eng. Rev., 13, 51 (1996)
Gupta R, Beg QK, Lorenz P, Appl. Microbiol. Biotechnol., 59(1), 15 (2002)
Anisworth SJ, Chem. Eng. News., 70, 27 (1992)
Marx JC, Collins T, D’Amico S, Feller G, Gerday C, Marine Biotechnol., 9, 293 (2007)
Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR, Curr. Opin. Biotechnol., 13, 253 (2002)
Wang QF, Hou YH, Xu Z, Miao JL, Li GY, Bioresour. Technol., 99(6), 1926 (2008)
Irwin JA, Alfredsson GA, Lanzetti AJ, Gudmundsson HM, Engel PC, FEMS Microbiol. Let., 201, 285 (2001)
Siddiqui KS, Cavicchioli R, Annual Rev. Biochem., 75, 403 (2006)
Kackar RN, J. Quality Technol., 17, 176 (1985)
Ghani JA, Choudhury IA, Hassan HH, J. Mater. Process. Technol., 145, 84 (2004)
Tsai JT, Liu TK, Chou JH, IEICE Trans. On, 8, 365 (2004)
Puri S, Beg QK, Gupta R, Curr. Microbiol., 44(4), 286 (2002)
Adinarayana K, Ellaiah P, J. Pharm. Sci., 5, 272 (2002)
Dutta JR, Dutta PK, Banerjee R, Proc. Biochem., 39, 2193 (2004)
Hanlon GW, Hodges NA, Russel AD, J. Gene. Microbiol., 128, 845 (1982)
Tabaraki R, Rastgoo S, Korean J. Chem. Eng., 31(4), 676 (2014)
Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661 (2014)
Yoon CH, Bok HS, Choi DK, Row KH, Korean Chem. Eng. Res., 50(3), 545 (2012)
Kim JW, Korean Chem. Eng. Res., 50(5), 879 (2012)
Thys R, Guzzon SO, Cladera-Olivera F, Brandelli A, Process Biochem., 41, 67 (2006)
De Coninck J, Bouquelet S, Dumortier V, Duyme F, Verdier-Denantes I, J. Ind. Microbiol. Biotechnol., 24, 285 (2000)
Plotnick MI, Rubin H, Schechter NM, J. Biol. Chem., 277, 29927 (2002)
McKeller RC, Cholette H, Appl. Biochem. Microbiol., 47, 1224 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로