ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 2, 2015
Accepted January 30, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

DSA 전극에서 염소 발생 메커니즘

A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®)

1서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소, 08826 서울특별시 관악구 관악로 1 2서울대학교 아시아 에너지환경 지속가능발전 연구소, 08826 서울특별시 관악구 관악로 1
1School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea 2Asian Insititute for Energy, Environment & Sustainability (AIEES), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Korean Chemical Engineering Research, October 2015, 53(5), 531-539(9), 10.9713/kcer.2015.53.5.531 Epub 12 October 2015
downloadDownload PDF

Abstract

클로로알카리 산업은 염화나트륨 수용액의 전기분해로 연간 약 7천만 톤의 가성소다 및 염소를 생산하는 전 세계적으로 가장 큰 전기화학 공정 중 하나이다. 클로로알카리 공정에서는 DSA(Dimensionally Stable Anodes) 전극인 RuO2 및 IrO2를 주로 사용하여 염소를 생산하며 상업적으로 사용되고 있는 전극에 비하여 염소 발생 효율이 높은 전극을 개발하려는 연구가 계속되고 있다. 그러나 보다 염소 발생 효율이 좋은 전극을 개발하기 위해서는 DSA 전극에서의 염소 발생 메커니즘에 대한 이해가 뒷받침되어야 한다. 따라서 본 글에서는 기존 연구를 중심으로 DSA 전극에서 염소 발생 메커니즘 연구가 현재까지 어떻게 발전되어 왔는지 검토하고 염소 발생 메커니즘의 핵심적인 요인들을 분석 및 정리하여 DSA 전극에서 염소 발생을 체계적으로 이해하는데 도움이 되고자 한다.
Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. DSA® (Dimensionally Stable Anodes) electrodes such as RuO2 and IrO2, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.

References

Trasatti S, Electrochim. Acta, 29, 1503 (1984)
Trasatti S, Electrochim. Acta, 45(15-16), 2377 (2000)
Hong-li F, Chlor-Alkali Industry, 9, 41 (2000)
Walton CW, White RE, J. Electrochem. Soc., 134, 565C (1987)
Khelifa A, Moulay S, Hannane F, Benslimene S, Hecini M, Desalination, 160(1), 91 (2004)
Bard AJ, Faulkner LR, “Electrochemical Methods: Fundamentals and Applications,” 2nd Ed., Wiley, New York(2001).
Tattum L, “Cw's Asia Chemical Prices for the Week Ended May 26, 2009,” IHS Chemical Week, New York(2009).
Trasatti S, Electrochim. Acta, 32, 369 (1987)
Over H, Electrochim. Acta, 93, 313 (2013)
Trasatti S, J. Electroanal. Chem., 111, 125 (1980)
Harrison J, Caldwell D, White R, Electrochim. Acta, 28, 1561 (1983)
Harrison J, Caldwell D, White R, Electrochim. Acta, 29, 203 (1984)
Choi J, Shim S, Yoon J, J. Ind. Eng. Chem., 19(1), 215 (2013)
Luu TL, Kim J, Yoon J, J. Ind. Eng. Chem., 21, 400 (2015)
Choi J, Park CG, Yoon J, Transactions of The Royal Society of Tropical Medicine and Hygiene, 107, 124 (2013)
Jirkovsky J, Hoffmannova H, Klementova M, Krtil P, J. Electrochem. Soc., 153(6), E111 (2006)
Ferro S, De Battisti A, J. Phys. Chem. B, 106(9), 2249 (2002)
Cao HZ, Lu DH, Lin JP, Ye Q, Wu JJ, Zheng GQ, Electrochim. Acta, 91, 234 (2013)
Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Hempelmann R, Electrochim. Acta, 78, 188 (2012)
Pankratiev YD, React. Kinet. Catal. Lett., 20, 255 (1982)
Cordfunke E, Konings R, Thermochim. Acta, 129, 63 (1988)
Ruetschi P, Delahay P, J. Chem. Phys., 23, 556 (1955)
O'M BJ, J. Chem. Phys., 24, 817 (1956)
Conway , Salomon M, Electrochim. Acta, 9, 1599 (1964)
Zeradjanin AR, Menzel N, Strasser P, Schuhmann W, ChemSusChem, 5, 1897 (2012)
Bianchi G, J. Appl. Electrochem., 1, 231 (1971)
Erenburg R, Krishtalik L, Bystrov V, Elektrokhirniya, 8, 1740 (1972)
Kuhn A, Mortimer C, J. Electrochem. Soc., 120, 231 (1973)
Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J, Phys. Chem. Chem. Phys., 12, 283 (2010)
Vallet CE, Tilak BV, Zuhr RA, Chen CP, J. Electrochem. Soc., 144(4), 1289 (1997)
Zeradjanin AR, Schilling T, Seisel S, Bron M, Schuhmann W, Anal. Chem., 83, 7645 (2011)
Ardizzone S, Carugati A, Lodi G, Trasatti S, J. Electrochem. Soc., 129, 1689 (1982)
Zeradjanin AR, La Mantia F, Masa J, Schuhmann W, Electrochim. Acta, 82, 408 (2012)
Lodi G, Sivieri E, Battisti AD, Trasatti S, J. Appl. Electrochem., 8, 135 (1978)
Losev V, Bune NY, Chuvaeva L, Electrochim. Acta, 34, 929 (1989)
Erenburg R, Krishtalik L, Yaroshevskaya I, Electrochemistry, 11, 989 (1975)
Janssen L, Visser G, Barendrecht E, Electrochim. Acta, 28, 155 (1983)
Faita G, Fiori G, J. Appl. Electrochem., 2, 31 (1972)
Chen R, Trieu V, Zeradjanin AR, Natter H, Teschner D, Kintrup J, Bulan A, Schuhmann W, Hempelmann R, Phys. Chem. Chem. Phys., 14, 7392 (2012)
Augustynski J, Balsenc L, Hinden J, J. Electrochem. Soc., 125, 1093 (1978)
Krishtalik L, Erenburg R, Moscow. Nauka, 240 (1981)
Guerrini E, Trasatti S, Russ. J. Electrochem., 42, 1017 (2006)
Consonni V, Trasatti S, Pollak F, O'Grady W, J. Electroanal. Chem., 228, 393 (1987)
Hepel T, Pollak FH, O'Grady WE, J. Electrochem. Soc., 133, 69 (1986)
Burke LD, O'Neill JF, J. Electroanal. Chem., 101, 341 (1979)
Krishtalik L, Electrochim. Acta, 26, 329 (1981)
Fernandez JL, de Chialvo MRG, Chialvo AC, Electrochim. Acta, 47(7), 1145 (2002)
Thomassen M, Karlsen C, Borresen B, Tunold R, Electrochim. Acta, 51(14), 2909 (2006)
Comninellis C, Electrochim. Acta, 39(11-12), 1857 (1994)
Erenburg R, Krishtalik L, Bystrov V, Sov. Electrochem, 8, 1240 (1972)
Janssen L, Starmans L, Visser J, Barendrecht E, Electrochim. Acta, 22, 1093 (1977)
Denton D, Harrison J, Knowles R, Electrochim. Acta, 24, 521 (1979)
Erenburg R, Sov. Electrochem, 20, 1481 (1984)
Fernandez JL, de Chialvo MRG, Chialvo AC, Electrochim. Acta, 47(7), 1129 (2002)
Fernandez JL, de Chialvo MRG, Chialvo AC, Electrochim. Acta, 47(7), 1137 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로