Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 8, 2015
Accepted April 22, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
구멍갈파래의 효소 가수분해 증진을 위한 마이크로파 이용 열수 전처리
Hydrothermal Pretreatment of Ulva pertusa Kjellman Using Microwave Irradiation for Enhanced Enzymatic Hydrolysis
인하대학교 생물공학과, 22212 인천 남구 인하로 100 1한남대학교 화공신소재공학과, 34054 대전 유성구 유성대로 1646
Department of Biological Engineering, Inha University, Incheon 22212, Korea 1Department of Advanced Materials & Chemical Engineering, Hannam University, Daejeon 34054, Korea
shha@hannam.kr
Korean Chemical Engineering Research, October 2015, 53(5), 570-575(6), 10.9713/kcer.2015.53.5.570 Epub 12 October 2015
Download PDF
Abstract
녹조류는 cellulose가 세포벽의 주요 구성성분이며 그 양이 다른 해조류에 비해 월등하고, 세포벽에 lignin이 없어 lignin 제거공정을 거치지 않고 cellulase를 사용하여 쉽게 당화시킬 수 있을 뿐만 아니라 저장산물인 전분도 당 성분으로 사용할 수 있다. 이에 바이오에너지 생산을 위한 좋은 바이오매스가 될 것으로 기대되는 녹조류인 구멍갈파래(Ulvapertusa Kjellman)를 사용하여 마이크로웨이브 장치를 통한 열수 전처리 효과가 cellulase를 사용한 가수분해 효율에 미치는 영향을 알아보았다. 열수의 온도에 따른 전처리 효과를 확인하기 위해 100~150 oC에서 전처리를 수행하였으며, 140~150 oC에서 가장 높은 전처리 효과를 얻었다. 또한 전처리 최적조건인 마이크로웨이브 장치의 출력 50W와 온도 150 oC에서 열수 전처리한 구멍갈파래에 포함되어 있는 탄수화물의 효소적 가수분해 효율을 높이기 위해 cellulase 외에 α-amylase와 β-glucosidase를 함께 사용하여, 효소 혼합의 효과를 확인하였다. 전처리한 구멍갈파래 시료에 cellulase와 α-amylase 그리고 β-glucosidase 활성을 가지는 Novozyme 188을 사용하여 가수분해하였을 경우 전처리하지 않은 구멍갈파래 시료와 비교하면 초기 가수분해속도가 6배 이상 월등히 높았고, 3시간 만에 구멍갈파래에 포함되어 있는 탄수화물의 96 wt%에 해당할 정도의 환원당이 생성되었으며, 이 양은 전처리하지 않은 구멍갈파래 시료를 24시간동안 효소적 가수분해해야 얻을 수 있는 환원당의 양으로 열수 전처리한 효과가 월등함을 보여주었을 뿐만 아니라 대부분의 탄수화물이 전환되는 최대 당화 효율을 얻을 수 있음을 보여준다.
The green algae have cellulose as a main structural component of their cell wall and the cellulose content in green algae is much higher than other marine algae such as brown algae and red algae. Furthermore, green algae do not contain lignin in their cell wall and store starch as food in their plastids. Thus, it was investigated that the effect of hydrothermal pretreatment process utilizing microwave irradiation for Ulva pertusa Kjellman, a division of green algae, which is expected to be utilized for bioenergy production, on the enzymatic hydrolysis. The hydrothermal temperature have an effect on the pretreatment of Ulva pertusa Kjellman, but the effect of power of microwave irradiation is negligible. The rate of enzymatic hydrolysis was increased as the hydrothermal temperature increased until 140 oC. The enzymatic hydrolysis of pretreated Ulva pertusa Kjellman under the optimum pretreatment conditions (50 W of microwave irradiation power and 150 oC of hydrothermal temperature) with cellulase, α-amylase, and Novozyme 188 having β-glucosidase acitivity resulted in the saccharification of 96 wt% of total carbohydrate in Ulva pertusa Kjellman during 3 hrs, while it took 24 hrs for the enzymatic hydrolysis of untreated Ulva pertusa Kjellman. It confirmed that the hydrothermal pretreatment was effective on Ulva pertusa Kjellman for the enzymatic hydrolysis.
Keywords
References
Mclaren JS, Trends Biotechnol., 23(7), 339 (2005)
Faaij A, Biomass Bioenerg., 32(8), 657 (2008)
Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
Hendriks ATWM, Zeeman G, Bioresour. Technol., 100(1), 10 (2009)
Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA, Korean J. Chem. Eng., 31(7), 1180 (2014)
Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
Xiao M, Shin HJ, Dong Q, Korean J. Chem. Eng., 30(12), 2119 (2013)
Kloareg B, Quatrano RS, Oceanogr. Mar. Biol. Annu. Rev., 26, 259 (1988)
Heo SJ, Park EJ, Lee KW, Jeon YJ, Bioresour. Technol., 96(14), 1613 (2005)
Ito K, Hori K, Food Rev. Int., 5, 101 (1989)
Liu CG, Wyman CE, Bioresour. Technol., 96(18), 1978 (2005)
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
Cayetano RD, Kim TH, Um BH, Korean Chem. Eng. Res., 52(1), 45 (2014)
Bonn G, Concin R, Bobleter O, Wood Sci. Technol., 17, 195 (1983)
Sunphorka S, Prapaiwatcharapan K, Hinchiranan N, Kangvansaichol K, Kuchonthara P, Korean J. Chem. Eng., 32(1), 79 (2015)
Kim JK, Um BH, Kim TH, Korean J. Chem. Eng., 29(2), 209 (2012)
Martin C, Thomsen AB, J. Chem. Technol. Biotechnol., 82(2), 174 (2007)
Kappe CO, Dallinger D, Murphree SS, Practical Microwave Synthesis for Organic Chemists, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim(2009).
Ha SH, Ngoc LM, An GM, Koo YM, Bioresour. Technol., 102(2), 1214 (2011)
Taylor KA, Appl. Biochem. Biotechnol., 53(3), 207 (1995)
Miller GL, Anal. Chem., 31, 426 (1958)
Faaij A, Biomass Bioenerg., 32(8), 657 (2008)
Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
Hendriks ATWM, Zeeman G, Bioresour. Technol., 100(1), 10 (2009)
Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA, Korean J. Chem. Eng., 31(7), 1180 (2014)
Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
Xiao M, Shin HJ, Dong Q, Korean J. Chem. Eng., 30(12), 2119 (2013)
Kloareg B, Quatrano RS, Oceanogr. Mar. Biol. Annu. Rev., 26, 259 (1988)
Heo SJ, Park EJ, Lee KW, Jeon YJ, Bioresour. Technol., 96(14), 1613 (2005)
Ito K, Hori K, Food Rev. Int., 5, 101 (1989)
Liu CG, Wyman CE, Bioresour. Technol., 96(18), 1978 (2005)
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
Cayetano RD, Kim TH, Um BH, Korean Chem. Eng. Res., 52(1), 45 (2014)
Bonn G, Concin R, Bobleter O, Wood Sci. Technol., 17, 195 (1983)
Sunphorka S, Prapaiwatcharapan K, Hinchiranan N, Kangvansaichol K, Kuchonthara P, Korean J. Chem. Eng., 32(1), 79 (2015)
Kim JK, Um BH, Kim TH, Korean J. Chem. Eng., 29(2), 209 (2012)
Martin C, Thomsen AB, J. Chem. Technol. Biotechnol., 82(2), 174 (2007)
Kappe CO, Dallinger D, Murphree SS, Practical Microwave Synthesis for Organic Chemists, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim(2009).
Ha SH, Ngoc LM, An GM, Koo YM, Bioresour. Technol., 102(2), 1214 (2011)
Taylor KA, Appl. Biochem. Biotechnol., 53(3), 207 (1995)
Miller GL, Anal. Chem., 31, 426 (1958)