Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 16, 2014
Accepted January 20, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
기-고체 반응모델을 이용한 Cyprus탄의 CO2 저온촉매가스화 반응거동
Kinetic of Catalytic CO2 Gasification for Cyprus Coal by Gas-Solid Reaction Model
충남대학교 에너지과학기술대학원, 34130 대전광역시 유성구 대학로 99 1충남대학교 바이오응용화학과, 34130 대전광역시 유성구 대학로 99 2한국에너지기술연구원, 34129 대전광역시 유성구 가정로 152
Graduate school of energy science and technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34130, Korea 1Department of Applied Chemistry and Biological Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34130, Korea 2Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea
Korean Chemical Engineering Research, October 2015, 53(5), 653-662(10), 10.9713/kcer.2015.53.5.653 Epub 12 October 2015
Download PDF
Abstract
일반적으로 가스화는 고온(1300~1400 oC), 고압(30~40 bar)에서 공정이 가동되나 이를 유지하기 위해 과도한 에너지가 사용된다. 본 연구에서는 공정 온도를 줄이기 위해 알칼리 촉매 중 K2CO3과 Na2CO3을 저등급의 사이프러스(Cyprus) 탄에 첨가하였고, 이산화탄소 분위기에서 가스화시켰을 때 나타나는 반응특성을 연구하였다. 열중량분석기를 활용하여 촉매의 함량, 촉매의 종류, 온도를 변수로서 가스화 공정조건을 결정하였다. 고체상 물리적 혼합법으로 촉매를 도입 시, 7 wt%의 Na2CO3가 첨가된 시료가 원탄보다 높은 활성을 보였다. 탄소전환율 거동을 예측하기 위해 시료별로 반응모델을 적용해본 결과, volumetric reaction model(VRM)이 탄소전환율 거동을 가장 잘 묘사하였다. 7 wt%의 Na2CO3을 첨가한 사이프러스 탄의 활성화 에너지는 63 kJ/mol로 원탄보다 낮으며, 이는 이산화탄소 분위기에서 석탄가스화의 반응성을 향상시킨다는 것을 보여주었다.
In general, the coal gasification has to be operated under high temperature (1300~1400 oC) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as K2CO3 and Na2CO3 were added into Cyprus coal. We investigated the kinetic of Cyprus char-CO2 gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of Na2CO3 and K2CO3, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% Na2CO3 is faster than raw coal for Cyprus char-CO2 gasification. The activation energy of coal added 7 wt% Na2CO3 was calculated as 63 kJ/mol which was lower than raw char. It indicates that Na2CO3 can improve the reactivity of char-CO2 gasification.
References
“World Electricity Generation,” IEA Energy Statistics(2012).
Wu Y, Wu S, Gao J, Energies, 2(3), 545 (2009)
Hippo E, Walker PL, Fuel, 54(4), 245 (1975)
Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630 (2007)
Liu H, Luo CH, Toyota M, Uemiya S, Kojima T, Fuel Process. Technol., 87(9), 769 (2006)
Standish N, Tanjung AFA, Fuel, 67(5), 666 (1988)
Ahn DH, Gibbs BM, Ko KH, Kim JJ, Fuel, 80(11), 1651 (2001)
Kajitani S, Suzuki N, Ashizawa M, Hara S, Fuel, 85(2), 163 (2006)
Yoshida S, Matsunami J, Hosokawa Y, Yokota O, Tamaura Y, Kitamura M, Energy Fuels, 13(5), 961 (1999)
Zhang Y, Ashizawa M, Kajitani S, Miura K, Fuel, 87(4-5), 475 (2008)
Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
Huang Y, Yin X, Wu C, Wang C, Xie J, Zhou Z, Ma L, Li H, Biotechnol. Adv., 27(5), 568 (2009)
Brooks JD, Taylor G, Walker PL, “Chemistry and Physics of Carbon,” New York, 4, 243(1968).
Liu TF, Fang YT, Wang Y, Fuel, 87(4-5), 460 (2008)
Everson RC, Neomagus HWJP, Kaitano R, Falcon R, du Cann VM, Fuel, 87(15-16), 3403 (2008)
de Souza-Santos M, Fuel, 68(12), 1507 (1989)
Duman G, Uddin MA, Yanik J, Fuel Process. Technol., 118, 75 (2014)
Park CY, Park JY, Lee SH, Rhu JH, Han MH, Rhee YW, Korean Chem. Eng. Res., 50(6), 1086 (2012)
Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306 (2013)
Hwang SC, Kim SK, Park JY, Lee DK, Lee SH, Rhee YW, Clean Technol., 20(1), 64 (2014)
Aranda A, Murillo R, Garcia T, Callen MS, Mastral AM, Chem. Eng. J., 126(2-3), 79 (2007)
Murillo R, Navarro MV, Lopez JM, Aylon E, Callen MS, Garcia T, Mastral AM, Ind. Eng. Chem. Res., 43(24), 7768 (2004)
Fermoso J, Stevanov C, Moghtaderi B, Arias B, Pevida C, Plaza M, Rubiera F, Pis J, J. Anal. Appl. Pyrolysis, 85(1), 287 (2009)
Wen C, J. Ind. Eng. Chem., 60(9), 34 (1968)
Ishida M, Wen C, AIChE J., 14(2), 311 (1968)
Bhatia S, Perlmutter D, AIChE J., 26(3), 379 (1980)
Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ, J. Therm. Anal. Calorim., 91(3), 779 (2008)
Box GE, Hunter JS, Hunter WG, “Statistics for Experimenters: Design, Innovation, and Discovery,” 2nd ed. Wiley & Sons, New Jersey, NJ(2005).
Strange JF, Walker PL, Carbon, 14(6), 345 (1976)
Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
McKee DW, Carbon, 20(1), 59 (1982)
Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208 (1985)
Wu Y, Wu S, Gao J, Energies, 2(3), 545 (2009)
Hippo E, Walker PL, Fuel, 54(4), 245 (1975)
Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630 (2007)
Liu H, Luo CH, Toyota M, Uemiya S, Kojima T, Fuel Process. Technol., 87(9), 769 (2006)
Standish N, Tanjung AFA, Fuel, 67(5), 666 (1988)
Ahn DH, Gibbs BM, Ko KH, Kim JJ, Fuel, 80(11), 1651 (2001)
Kajitani S, Suzuki N, Ashizawa M, Hara S, Fuel, 85(2), 163 (2006)
Yoshida S, Matsunami J, Hosokawa Y, Yokota O, Tamaura Y, Kitamura M, Energy Fuels, 13(5), 961 (1999)
Zhang Y, Ashizawa M, Kajitani S, Miura K, Fuel, 87(4-5), 475 (2008)
Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
Huang Y, Yin X, Wu C, Wang C, Xie J, Zhou Z, Ma L, Li H, Biotechnol. Adv., 27(5), 568 (2009)
Brooks JD, Taylor G, Walker PL, “Chemistry and Physics of Carbon,” New York, 4, 243(1968).
Liu TF, Fang YT, Wang Y, Fuel, 87(4-5), 460 (2008)
Everson RC, Neomagus HWJP, Kaitano R, Falcon R, du Cann VM, Fuel, 87(15-16), 3403 (2008)
de Souza-Santos M, Fuel, 68(12), 1507 (1989)
Duman G, Uddin MA, Yanik J, Fuel Process. Technol., 118, 75 (2014)
Park CY, Park JY, Lee SH, Rhu JH, Han MH, Rhee YW, Korean Chem. Eng. Res., 50(6), 1086 (2012)
Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306 (2013)
Hwang SC, Kim SK, Park JY, Lee DK, Lee SH, Rhee YW, Clean Technol., 20(1), 64 (2014)
Aranda A, Murillo R, Garcia T, Callen MS, Mastral AM, Chem. Eng. J., 126(2-3), 79 (2007)
Murillo R, Navarro MV, Lopez JM, Aylon E, Callen MS, Garcia T, Mastral AM, Ind. Eng. Chem. Res., 43(24), 7768 (2004)
Fermoso J, Stevanov C, Moghtaderi B, Arias B, Pevida C, Plaza M, Rubiera F, Pis J, J. Anal. Appl. Pyrolysis, 85(1), 287 (2009)
Wen C, J. Ind. Eng. Chem., 60(9), 34 (1968)
Ishida M, Wen C, AIChE J., 14(2), 311 (1968)
Bhatia S, Perlmutter D, AIChE J., 26(3), 379 (1980)
Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ, J. Therm. Anal. Calorim., 91(3), 779 (2008)
Box GE, Hunter JS, Hunter WG, “Statistics for Experimenters: Design, Innovation, and Discovery,” 2nd ed. Wiley & Sons, New Jersey, NJ(2005).
Strange JF, Walker PL, Carbon, 14(6), 345 (1976)
Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
McKee DW, Carbon, 20(1), 59 (1982)
Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208 (1985)