ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 26, 2015
Accepted August 1, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

유기클레이의 선택적 분산에 의한 폴리프로필렌/아이오노머/클레이 나노복합체의 유변학 및 형태학적 특성 연구

Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays

서울대학교 화학생물공학부, 08826 서울시 관악구 관악로 1
School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
ahnnet@snu.ac.kr
Korean Chemical Engineering Research, December 2015, 53(6), 709-716(8), 10.9713/kcer.2015.53.6.709 Epub 30 November 2015
downloadDownload PDF

Abstract

본 연구에서는 폴리프로필렌/아이오노머/클레이 삼상 복합체에서 클레이의 분산 및 위치에 따른 복합체의 구조변화와 물성을 연구하였다. 폴리프로필렌 90 wt%, 아이오노머 10 wt%의 블렌드에 클레이를 0~10 wt% 첨가하면서 물성변화를 관찰하였다. 클레이 함량 3%이하의 복합체에서 클레이는 아이오노머 상의 내부에 존재하는 반면, 클레이 함량이 증가하면서 분산상에 클레이가 채워져 견고한 구조가 형성되며 추가적인 클레이는 계면에 존재하게 된다. 이에 따라 계면에서의 상호작용은 폴리프로필렌과 아이오노머로부터 폴리프로필렌-클레이와 아이오노머-클레이의 상호작용으로 변화하며 이에 따라 미세구조 및 유변물성이 변화한다. 복합체의 저장 모듈러스(G’)는 클레이가 분산상의 내부에 존재할 때는 거의 영향을 받지 않지만 클레이가 계면에 위치하면서부터 크게 증가한다. 또한 파단면의 모폴로지 역시 클레이가 복합체의 내부에만 존재할 경우에는 분산상의 상 경계가 뚜렷하게 관찰되고 분산상의 크기가 증가하지만, 클레이가 계면에 위치할 때는 분산상의 크기가 줄어들고 파단면의 모폴로지 역시 상의 경계가 뚜렷하게 관찰되지 않는 상용화된 모폴로지를 보인다. 우리는 복합체의 유변물성의 변화를 통하여 분산상 내부구조의 변화에 따른 클레이의 위치변화와 계면에서의 상호작용의 변화를 정량화 하였다. 또한 고체상태에서의 계면 접착량 측정을 통하여 계면에서의 상호작용의 증가함에 따라 접착력이 증가하고, 미세구조상 클레이 입자가 계면에 존재할 때 결정화도가 낮아짐을 확인하였다.
In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1~10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene-ionomer and ionomer-clay which affected rheological properties. The storage modulus (G’) of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particl es by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

References

Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B, Macromol. Chem. Phys., 212(6), 613 (2011)
Wu S, J. Polym. Sci. C: Polym. Symp., 34(1), 19 (1971)
Shokoohi S, Arefazar A, Naderi G, Polym. Adv. Technol., 23(3), 418 (2012)
Ray SS, Bousmina M, Macromol. Rapid Commun., 26(6), 450 (2005)
Ray SS, Pouliot S, Bousmina M, Utracki LA, Polymer, 45(25), 8403 (2004)
Taguet A, Cassagnau P, Lopez-Cuesta JM, Prog. Polym. Sci, 39(8), 1526 (2014)
Ramsden W, Proceedings of the Royal Society of London, 72, 156 (1903)
Pickering SU, J. Chem. Soc.-Dalton Trans., 91, 2001 (1907)
Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C, Rheol. Acta, 46(4), 469 (2007)
Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C, Polymer, 47(11), 3967 (2006)
Sanchez-Valdes S, Lopez-Quintanilla ML, Ramirez-Vargas E, Medellin-Rodriguez FJ, Gutierrez-Rodriguez JM, Macromol. Mater. Eng., 291(2), 128 (2006)
Lim HT, Liu H, Ahn KH, Lee SJ, Hong JS, Korean J. Chem. Eng., 27(2), 705 (2010)
Liu HZ, Lim HT, Ahn KH, Lee SJ, J. Appl. Polym. Sci., 104(6), 4024 (2007)
Pandey P, Mohanty S, Nayak SK, Korean J. Chem. Eng., 31(8), 1480 (2014)
Wang Y, Zhang Q, Fu Q, Macromol. Rapid Commun., 24(3), 231 (2003)
Kooshki RM, Ghasemi I, Karrabi M, Azizi H, J. Vinyl Additive Technology, 19(3), 203 (2013)
Pukanszky B, Tudos B, Kolarij J, Lednicky F, Polym. Compos., 11(2), 98 (1990)
Shen L, Lin YJ, Du QG, Zhong W, Yang YL, Polymer, 46(15), 5758 (2005)
Utracki LA, Kanial MR, Polym. Eng. Sci., 22(2), 96 (1982)
Sumita M, Tsukihi H, Miyasaka K, Ishikawa K, J. Appl. Polym. Sci., 29(5), 1523 (1984)
Chen J, Shi YY, Yang JH, Zhang N, Huang T, Wang Y, Polymer, 54(1), 464 (2013)
Kim B, Lee SH, Lee D, Ha B, Park J, Char K, Ind. Eng. Chem. Res., 43(19), 6082 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로