ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 12, 2015
Accepted April 3, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

역상 크로마토그래피에서 모멘트 방법과 van Deemter 식을 이용한 고리형 아데노신 일인산의 분리특성 연구

Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation

충남대학교 화학공학과, 34134 대전광역시 유성구 궁동 220
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea
ihkim@cnu.ac.kr
Korean Chemical Engineering Research, December 2015, 53(6), 723-729(7), 10.9713/kcer.2015.53.6.723 Epub 30 November 2015
downloadDownload PDF

Abstract

고성능액체크로마토그래피(high-performance liquid chromatography, HPLC)에서 C18(octadecyl silica, ODS) 칼럼에서 고리형 아데노신 일인산(cyclic adenosine monophosphate, cAMP)의 크로마토그램을 얻은 후, 모멘트 분석을 수행하였다. 일반속도 모델(general rate model, GR model)을 기반으로 first absolute moment와 second central moment를 계산하였다. 모멘트 분석의 중요한 세 가지 계수인 분자확산계수(molecular diffusivity, Dm), 외부물질전달계수(external mass transfer coefficient, kf), 입자내부확산계수(intra-particle diffusivity, De)는 각각 Wilke-Chang 식, Wilson-Geankoplis 식을 이용하고 이론단수(theoretical plate number) 식과 van Deemter 식을 비교하여 계산하였다. 실험은 각각 세 가지의 이동상 조성, 용질 농도, 유량 조건에서 수행하였다. Van Deemter 그래프를 그려 모멘트 분석결과를 정성적으로 정리했으며, 이론단 상당높이(height equivalent to a theoretical plate, HETP, Htotal)에 Hax, Hf, Hd가 미치는 영향을 알아보기 위해 van Deemter coefficient를 비교했다. HETP에 가장 큰 영향을 주는 요인은 입자내부확산(Hd)이었으며 외부물질 전달(Hf)는 그 영향이 매우 작았다.
The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatography (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second central moment. Three important coefficients for moment analysis, which are molecular diffusivity (Dm), external mass transfer coefficient (kf), and intra-particle diffusivity (De), were estimated by the Wilke-Chang equation, Wilson-Geankoplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentration. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were compared each other to effect Hax, Hf, and Hd on height equivalent to a theoretical plate (HETP, Htotal). The value of intraparticle diffusion (Hd) was the primary factor which makes for HETP whereas external mass transfer (Hf) was disregardable factor.

References

Miyabe K, Suzuki M, AIChE J., 38, 901 (1992)
Miyabe K, Guiochon G, J. Sep. Sci., 26, 155 (2003)
Miyabe K, J. Sep. Sci., 32, 757 (2009)
Choi DY, Row KH, J. Ind. Eng. Chem., 10(6), 1052 (2004)
Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9 (1966)
Grushka E, Snyder LR, Knox JH, J. Chromatogr. Sci., 13, 25 (1975)
Seirafi HA, Smith JM, AIChE J., 26, 711 (1980)
Gunn DJ, Chem. Eng. Sci., 42, 363 (1987)
Tallarek U, Albert K, Bayer E, Guiochon G, AIChE J., 42(11), 3041 (1996)
Tallarek U, Bayer E, Guiochon G, J. Am. Chem. Soc., 120(7), 1494 (1998)
Tallarek U, Bayer E, van Dusschoten D, Scheenen T, Van As H, Guiochon G, Neue UD, AIChE J., 44(9), 1962 (1998)
Tallarek U, Dusschoten DV, As VH, Guiochon G, Bayer E, Magn. Reson., 16, 699 (1998)
Tallarek U, Dusschoten DV, As HV, Bayer E, Guiochon G, J. Phys. Chem. B, 102, 3489 (1998)
Sajonz P, Guansajonz H, Zhong GM, Guiochon G, Biotechnol. Prog., 13(2), 170 (1997)
Sajonz P, Kele M, Zhong G, Sellergen B, Guiochon G, J. Chromatogr. A, 810, 1 (1998)
Miyabe K, Guiochon G, Biotechnol. Prog., 15(4), 740 (1999)
Miyabe K, Canazzini A, Gritti F, Kele M, Guiochon G, Anal. Chem., 75, 6975 (2003)
Miyabe K, Guiochon G, J. Chromatogr. A, 1217, 1713 (2010)
Gritti F, Guiochon G, AIChE J., 57(2), 346 (2011)
Silva IJD, Veredas D, Carpes MJS, Santana CC, Adsorption, 11, 123 (2005)
Spoto G, Whitehead E, Ferraro AD, Terlizzi PM, Turano C, Riva F, Anal. Biochem., 196, 207 (1991)
Zhang Y, Lu P, Wang H, Zhang J, Li H, Liu J, J. Food Sci., 30, 321 (2009)
Miyabe K, Isogai R, J. Chromatogr. A, 1218, 6639 (2011)
Choi DY, Row KH, J. Ind. Eng. Chem., 10(6), 1052 (2004)
Won HJ, Kim IH, Biotechnol. Bioeng., 6, 31 (2001)
Kim IH, Kim JT, Korean J. Chem. Eng., 15(6), 575 (1998)
Wang YJ, Gerard C, Macromolecules, 22, 3781 (1989)
Lee CH, Kang JH, Row KH, Biotechnol. Bioeng., 7, 16 (2002)
Ra YJ, Jung YA, Row KH, Biotechnol. Bioeng., 17, 88 (2002)
Park IS, Ahn DY, Korean Chem. Eng. Res., 27, 331 (1989)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로